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Abstract 
Portfolio Selection Problem (PSP) is actively discussed in financial research. The choice of available 
assets poses the need for exploration and the objective to maximize the portfolio payoffs makes the 
PCP an explore-exploit decision-making problem. Multi-armed bandit algorithms (MAB) suit well 
for such problems when applied as the decision engines in Naïve Bandit Portfolio algorithms (NBP). 
An NBP’s performance varies by varying the MAB inside the algorithm. In this work we test a 
Stochastic Multi-Armed Bandit (SMAB) named effSAMWMIX, which we proposed in a previous 
work of ours, to solve the PSP. We compare the performance of effSAMWMIX vis-à-vis KL-UCB, 
Thompson Sampling algorithm and the benchmark Market Buy & Hold strategy. We tested the 
algorithms on simulated and real-world market datasets. We report our results where 
effSAMWMIX, applied as the decision-making engine of NBP, has achieved better cumulative 
wealth for all portfolios when compared to the competing SMAB algorithms.  
 
Keywords: Portfolio Selection Problem, Multi-Armed Bandit, Geometric Brownian Motion 

1 Introduction  
Decision making under uncertainty has always been a challenge to a decision maker. A 

Portfolio Selection Problem (PSP) often encounters such uncertainty due to the changing economic 
and political environments. The fast proliferation of the information, on Internet-based modern day 
economies, imposes a need to make a quick decision based on the available but limited information. 
Many business problems including the Online Portfolio Selection Problem (OPSP) could require 
simultaneous optimization and the best choice identification. OPSP has been widely discussed in 
Computational Finance(Borodin and El-Yaniv 2005; Fiat 1998; Li and Hoi 2014; Mohr and 
Schmidt 2013; Schmidt, Mohr and Kersch 2010).  

To solve any PSP, the investor decides on a strategy to allocate the available (finite) wealth 
among the available choice of assets. Every asset is a diverse investment opportunity and the 
realization of the asset allocation strategy builds a portfolio. An asset is risky if the prices of the 
asset are uncertain and such riskiness needs to be incorporated into the portfolio allocation process. 
The time between any two portfolio allocation decisions is called a period. If there is only one 
decision during the whole investment period, it is called a Single-Period PSP.A multi-period PSP 
requires sequential decision-making over the time horizon of investment and thus is proposed as 
an online decision-making problem. Investor’s during the decision making is to optimize an 
objective decision which could be the Return on Investment(RoI) or Risk of losing wealth (Risk) 
or a combination of both (Risk & Return). Thus portfolio decision making could also involve the 
management of Risk and maximize the RoI. The following section briefly discusses the PSP and 
introduces a Machine Learning(ML) perspective of the OPSP problem. 



  

2 OPSP & Machine Learning Algorithms 
 In the academic literature, OPSP is addressed in two ways. The first one considers the risk 

management into the objective function and thus the performance measure will be quantified by 
the Cumulative Wealth(CW) achieved or the net risk of the decision with respect to the achievable 
wealth. Such performance measures are seen from Markowitz’s seminal work (Markowitz 1952) 
and also in Sharpe’s work(Sharpe 1966).A few other works followed similar risk management 
measures until recently in 2011(Lisi 2011),(Rockafellar and Uryasev 2000).It can be observed that 
these ideas are characterized by building statistical models of the asset prices in the market. The 
input to these statistical models requires a forecasting model in some form(DeMiguel, Martín-
Utrera and Nogales 2015).The forecasting model, in turn, requires a calibration based on historical 
data of asset prices(Sharpe 1963) or market capitalization data (Fama and French 1992).  

The second way of addressing the OPSP is based on utilizing the modern day computing 
infrastructure along with intelligent ML techniques that include Neural Networks or Reinforcement 
Learning Algorithms(Shen, Wang, Jiang and Zha 2015).ML Algorithms are solely based on the 
empirical observations motivated by dynamic rise and fall of the asset prices. Algorithms 
(alternatively Strategies) like Follow-the-Winner(Agarwal, Hazan, Kale and Schapire 2006; Li and 
Hoi 2014), Follow-the-Loser(Li and Hoi 2012) etc. are a couple of those which make use of such 
dynamic price changes. In brief, an ML Algorithm’s approach to OPSP is to concretely explore the 
available information of past asset prices and based on its indigenous technique, provide a 
suggestion as to how the portfolio allocation be done for the next period. The algorithm typically 
intends to maximize the cumulative wealth at the end of the multi-period investment horizon. 

To analyze the performance of an OPSP strategy, the algorithm is run on a simulated data such 
as that obtained by simulating stock prices using Geometric Brownian Motion (GBM)(Marathe and 
Ryan 2005) and then on real-time market data obtained from standard datasets available from 
various sources(Bruni, Cesarone, Scozzari and Tardella 2016). It is to be noted that though it is fast 
to obtain the results by running the algorithm and thus easier to compare the performance with 
other strategies, the quality of the results heavily depends on the quality of the input data. Hence to 
avoid the dependency on the same, it is common that the performance of an algorithm is compared 
to a benchmark algorithm (Mohr, Ahmad and Schmidt 2014) which could be optimal in the 
hindsight. The Buy-and-Hold(Li and Hoi 2014) could be one such benchmark algorithm which the 
performance of an ML based OPSP algorithm is compared with.  

This work considers using a Reinforcement Learning algorithm called effSAMWMIX which 
is a Stochastic Multi-Armed Bandit(SMAB) algorithm. We employ effSAMWMIX to build a 
Naïve Bandit Portfolio(NBP) similar to Shen et.al’s work(Shen, Wang, Jiang and Zha 2015) and 
compare the same with NBPs that implement standard SMABs like UCB(Auer and Ortner 2010) 
,KL-UCB(Garivier and Cappé 2011) and Thompson Sampling(Agrawal and Goyal 2012; 
Kaufmann, Korda and Munos 2012; Thompson 1933). We compare the performances over a 
multitude of simulated and benchmark datasets to analyze the results. The following section 
introduces SMAB and how an NBP is constructed. 

3 Stochastic Multi-Armed Bandits & Naïve Bandit Portfolio Algorithm 
An SMAB typically deals with an explore-exploit problem scenario where there are a set of 

available choices and the decision maker has to decide on only one of the choices can be opted. 
This is similar to that of a Portfolio Selection problem except that in a typical MAB, the payoffs of 



  

the action other than the chosen action in that round remain unknown. But for a PSP, the data is 
available as the asset prices for the previous time period are known to the decision maker. 

3.1 A Stochastic Multi-Armed Bandit 
 A Multi-Armed Bandit(MAB) problem is a sequential decision-making problem which 

spans over a horizon of decision-making rounds(𝑇𝑇).In each round 𝑡𝑡 the decision maker chooses an 
action 𝑎𝑎𝑡𝑡 from among a set of 𝐾𝐾 action choices that are available and obtains a reward 𝑟𝑟𝑡𝑡

𝑎𝑎𝑡𝑡𝜖𝜖(0,1) 
for choosing arm 𝑎𝑎𝑡𝑡 in round 𝑡𝑡 .The choice is based on an objective function that maximizes the 
overall reward or cumulative wealth(CW) from the decision making process. Alternatively the 
objective function could be to minimize the Regret(𝑅𝑅𝑡𝑡) which is the difference between the highest 
possible reward and the CW obtained by the algorithm up to that round of decision making.(Lai 
and Robbins 1985; Robbins 1985). 

 Thus, the cumulative reward of a MAB is 𝐶𝐶𝐶𝐶 = ∑ 𝐸𝐸(𝑟𝑟𝑡𝑡
𝑎𝑎𝑡𝑡) 𝑇𝑇

𝑡𝑡=1                                              (1) 
Let the maximum possible reward be 𝑣𝑣∗ and hence maximum reward for such an oracle policy 

is 𝑇𝑇 ∗ 𝑣𝑣∗. 
Then the regret of the MAB algorithm is given by 𝑅𝑅𝑇𝑇 = 𝑇𝑇𝑣𝑣∗ − ∑ 𝐸𝐸(𝑟𝑟𝑡𝑡

𝑎𝑎𝑡𝑡) 𝑇𝑇
𝑡𝑡=1                       (2) 

A general MAB has no restrictions on the reward distribution. But a Stochastic Multi-Armed 
Bandit (SMAB) problem imposes an assumption that the rewards of each of the available action 
choices(arms) follow a fixed distribution 𝑣𝑣𝑖𝑖𝑜𝑜𝑜𝑜 [0,1] unknown to the SMAB algorithm. Also the 
reward of each action 𝑖𝑖 is independent of the rewards it obtained from any other time horizon (or 
pull) and independent of rewards of other actions (Robbins 1985).This means that the rewards 
�𝑋𝑋𝑖𝑖,𝑡𝑡�𝑡𝑡𝑡𝑡𝑡𝑡 are assumed to be independent and identically distributed (i.i.d) from 𝑣𝑣𝑖𝑖 and all the 
rewards of  𝐾𝐾 choices(arms) are also independent of each other.While there are a few other MAB 
settings like the adversarial MAB(Auer, Cesa-Bianchi, Freund and Schapire 1995) where the 
environment chooses the rewards so as to minimize the CW, we deal with SMABs with the rewards 
following the assumption stated above. 

3.2 A Naïve Bandit Portfolio strategy 
 A Naïve Bandit Portfolio (NBP) implements an SMAB inside as a decision-making engine. 
The inputs to the SMAB are the time horizon 𝑇𝑇, number of available arms 𝐾𝐾 where each arm 
represents a portfolio or asset, the time period between the decisions Δt which could be a day for 
daily returns or a week for weekly returns or  month or an year. 𝑟𝑟𝑡𝑡

𝑎𝑎𝑡𝑡is the reward obtained when an 
asset 𝑎𝑎𝑡𝑡is chosen in time period t and 𝐶𝐶𝑊𝑊𝑡𝑡 is the cumulative wealth obtained until the round 𝑡𝑡. 
The gross return on 𝑖𝑖𝑡𝑡ℎasset in round 𝑡𝑡 is denoted by 𝑟𝑟𝑡𝑡𝑖𝑖 and is obtained as given below 
                                                       𝑟𝑟𝑡𝑡𝑖𝑖 = 𝑃𝑃𝑡𝑡,𝑖𝑖/𝑃𝑃𝑡𝑡−1,𝑖𝑖                                                                       (3) 
where 𝑃𝑃𝑡𝑡,𝑖𝑖 is the price of the asset 𝑖𝑖 at time 𝑡𝑡. Thus the returns in round t 𝜖𝜖(1,𝑇𝑇) over the time for 

the portfolio with 𝐾𝐾 arms can be given as 𝑹𝑹𝒕𝒕 = �𝑟𝑟𝑡𝑡,1, 𝑟𝑟𝑡𝑡,2, 𝑟𝑟𝑡𝑡,3 … … 𝑟𝑟𝑡𝑡,𝐾𝐾�
𝑇𝑇. The portfolio investment 

decision over is the determination of the weights proportionate to which each the investment is 
budgeted over the assets available to the investor. Thus the weights vector at time 𝑡𝑡 which is 
represented as  

                                             𝜔𝜔𝑡𝑡 = �𝜔𝜔𝑡𝑡,1,𝜔𝜔𝑡𝑡,2,,𝜔𝜔𝑡𝑡,3 … . .𝜔𝜔𝑡𝑡,𝐾𝐾�
𝑇𝑇                                                    (4)                            



  

Thus 𝜔𝜔𝑡𝑡,𝑖𝑖 which is the invested wealth percentage on the 𝑖𝑖𝑡𝑡ℎ asset in round  𝑡𝑡 is determined by the 
SMAB algorithm. 
       ∑ 𝜔𝜔𝐾𝐾

𝑖𝑖=1 𝑡𝑡,𝑖𝑖 = 1                                    (5) 

Also for an SMAB to operate, 𝑟𝑟𝑡𝑡𝑖𝑖𝜖𝜖(0,1) which means that the rewards are to be normalized and 
then given as the input to the algorithm. This is a critical condition to be imposed on the dataset in 
order to use any SMAB on an OPSP. Another critical aspect is the introduction of a parameter 𝜏𝜏 
indicating the rolling-horizon settings(Shen, Wang and Ma 2014), which is the number of periods 
of data ,prior to the current decision making period, the algorithm should consider while calculating 
the necessary input parameters like the mean return, standard deviation and the Sharpe 
ratios(𝑆𝑆𝑆𝑆).Thus for an NBP, the return for an asset 𝑖𝑖 in round 𝑡𝑡 is given as 𝑟𝑟𝑡𝑡𝑖𝑖 = 𝑆𝑆𝑅𝑅𝑡𝑡𝑖𝑖                (6) 
 

Where                                                   𝑆𝑆𝑅𝑅𝑡𝑡𝑖𝑖 = �𝜇𝜇𝑡𝑡
𝑖𝑖

𝜎𝜎𝑡𝑡
𝑖𝑖�
𝜏𝜏
.             (7) 

The 𝜏𝜏 denotes the rolling-horizon time period.For example, 𝜏𝜏 = 120 indicates that the mean(𝜇𝜇) 
and standard deviations(𝜎𝜎) of the past 120 time periods is taken in to consideration for calculating 
𝑆𝑆𝑅𝑅𝑡𝑡𝑖𝑖.Then to get the 𝑆𝑆𝑅𝑅𝑡𝑡𝑖𝑖  𝜖𝜖[0,1] normalize the 𝑆𝑆𝑅𝑅𝑡𝑡𝑖𝑖 for based on data for every asset 𝑖𝑖 in period 𝑡𝑡. 
 

     𝑛𝑛𝑛𝑛𝑅𝑅𝑡𝑡𝑖𝑖 = 𝑆𝑆𝑅𝑅𝑡𝑡
𝑖𝑖−min (𝑆𝑆𝑅𝑅𝑡𝑡 

(𝑖𝑖=1 𝑡𝑡𝑡𝑡 𝐾𝐾))

max (𝑆𝑆𝑅𝑅𝑡𝑡 
(𝑖𝑖=1 𝑡𝑡𝑡𝑡 𝐾𝐾))−min (𝑆𝑆𝑅𝑅𝑡𝑡 

(𝑖𝑖=1 𝑡𝑡𝑡𝑡 𝐾𝐾))
                       (8) 

The Naïve Bandit Portfolio algorithm’s pseudocode is put below. 
 
 

 
 
 
 
 
 
 
 
 
 

 
Figure 1: A Naïve Bandit Portfolio (NBP) algorithm 

 From the Step 5 of NBP algorithm (Figure 1), it is seen that an SMAB is implemented to 
compute the weights vector for any round 𝜖𝜖[1,𝑇𝑇 − 𝜏𝜏] . Current work compares the performance of 
the proposed effSAMWMIX SMAB with UCB1, KL-UCB and, Thompson Sampling (TS) 
algorithms. The functioning of each of these algorithms is put below. 

3.2.1 The UCB1 algorithm 
UCB1 is among those first generation algorithms that update and consider both exploration and 
exploitation components in a same surrogate UCB parameter(Auer, Cesa-Bianchi and Fischer 
2002). Consider the following UCB1 parameter to be updated in every iteration for every arm 

Inputs :   K (assets), T (time horizon),Δt,𝐑𝐑𝒕𝒕, 𝜏𝜏 
𝒇𝒇𝒇𝒇𝒇𝒇 𝑖𝑖 = 1 𝑡𝑡𝑡𝑡 (𝑇𝑇 − 𝜏𝜏) 𝒅𝒅𝒅𝒅 
Step-1:   𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑡𝑡ℎ𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝜇𝜇𝑡𝑡𝑖𝑖 =  𝐸𝐸(𝑅𝑅𝑡𝑡) 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝜏𝜏 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

Step-2:   𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝜎𝜎𝑡𝑡𝑖𝑖 =  �𝜆𝜆𝑡𝑡𝑖𝑖   𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 

      𝜆𝜆𝑡𝑡𝑖𝑖  𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖′𝑠𝑠 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡ℎ𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝜏𝜏 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  
Step-3:  Using (7) Calculate the 𝑆𝑆𝑅𝑅𝑡𝑡𝑖𝑖  matrix for every asset for rounds 𝑡𝑡 = 𝜏𝜏 𝑡𝑡𝑡𝑡 𝑇𝑇. 
Step-4: Using (8) Normalize the 𝑆𝑆𝑅𝑅𝑡𝑡𝑖𝑖  matrix so that every  𝑛𝑛𝑛𝑛𝑅𝑅𝑡𝑡𝑖𝑖𝜖𝜖[0,1] for round t =
                𝜏𝜏 𝑡𝑡𝑡𝑡 𝑇𝑇.𝑇𝑇ℎ𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑅𝑅𝑡𝑡𝑖𝑖  𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 
Step-5:  P𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑛𝑛𝑛𝑛𝑅𝑅𝑡𝑡𝑖𝑖  𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡ℎ𝑒𝑒 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑎𝑎𝑎𝑎𝑎𝑎𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑚𝑚  

         𝑤𝑤ℎ𝑖𝑖𝑖𝑖ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑏𝑏𝑏𝑏 𝑈𝑈𝑈𝑈𝑈𝑈1,𝐾𝐾𝐾𝐾 − 𝑈𝑈𝑈𝑈𝑈𝑈,𝑇𝑇ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  
               𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝜔𝜔𝑡𝑡 = �𝜔𝜔𝑡𝑡,1,𝜔𝜔𝑡𝑡,2,,𝜔𝜔𝑡𝑡,3 … . .𝜔𝜔𝑡𝑡,𝐾𝐾�

𝑇𝑇
 

Output: 
𝑇𝑇ℎ𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝜔𝜔𝑡𝑡 = �𝜔𝜔𝑡𝑡,1,𝜔𝜔𝑡𝑡,2,,𝜔𝜔𝑡𝑡,3 … . .𝜔𝜔𝑡𝑡,𝐾𝐾�

𝑇𝑇
 

𝑇𝑇ℎ𝑒𝑒 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ  𝐶𝐶𝐶𝐶 = ��𝜔𝜔𝑡𝑡,1,𝜔𝜔𝑡𝑡,2,,𝜔𝜔𝑡𝑡,3 … . .𝜔𝜔𝑡𝑡,𝐾𝐾�
𝑇𝑇

𝑇𝑇

∗ 𝑅𝑅𝑡𝑡 



  

𝑢𝑢𝑢𝑢𝑏𝑏𝑡𝑡𝑖𝑖 = max�𝑥𝑥𝑡𝑡𝚤𝚤� + �2ln(𝑡𝑡)
𝑛𝑛𝑖𝑖

�    where 𝑥𝑥𝑡𝑡𝚤𝚤�  is the empirical mean of observed reward of arm 𝑖𝑖 until 

round t and 𝑛𝑛𝑖𝑖 is the total number of times arm 𝑖𝑖 is played until round 𝑡𝑡 .This UCB estimate is 

similar to 𝑢𝑢𝑐𝑐𝑏𝑏𝑖𝑖 = argmax(𝜇𝜇𝚤𝚤� ) + 𝒫𝒫𝑖𝑖    for any round 𝑖𝑖. While argmax(𝜇𝜇𝚤𝚤� ) = max�𝑥𝑥𝚤𝚤𝑘𝑘����  is the 

exploitation component, 𝒫𝒫𝑖𝑖 =  �2ln(𝑘𝑘)
𝑛𝑛𝑖𝑖

  is the exploration bonus. Thus the optimistic guess 

parameter will get updated simultaneously with knowledge related to both exploration and 
exploitation. The UCB1 algorithm can be written as follows 

 
1. Initialization : Play (execute) each arm once and obtain rewards 𝑥𝑥𝑖𝑖 

2. Further , play the arm that satisfies argmax �𝑥𝑥𝑡𝑡𝚤𝚤� + �2 ln(𝑡𝑡)
𝑛𝑛𝑖𝑖
�   in that round 

a. 𝑛𝑛𝑖𝑖 is number of times that particular arm is played so far 
b. 𝑡𝑡 is the current round 
c. 𝑥𝑥𝑡𝑡𝚤𝚤�  is the average reward for arm 𝑖𝑖 at round 𝑡𝑡 

Figure 2:UCB1 algorithm 

3.2.2 The KL-UCB algorithm 
KL stands for Kullback-Leibler divergence and KL-UCB(Garivier and Cappé 2011)  

differs from UCB1 in the padding function 𝒫𝒫𝑖𝑖 which is derived by employing KL divergence. The 
authors reported improved regret bounds for KL-UCB where 𝒫𝒫𝑖𝑖 incorporates the distance between 
estimated reward distributions for the arms when calculating the UCB parameter. The algorithm is 
put below. 

1. Initialization : Play (execute) each arm once and obtain rewards 𝑥𝑥𝑖𝑖 
2. Further , play the arm that satisfies argmaxi�𝑛𝑛𝑖𝑖 . 𝑑𝑑(𝜇𝜇𝑖𝑖,𝑀𝑀�)  ≤  log 𝑡𝑡 + 𝑐𝑐 log log 𝑡𝑡 in that 

round 
a. 𝑛𝑛𝑖𝑖 is number of times that particular arm is played so far 
b. 𝑖𝑖 is the arm 
c. 𝑑𝑑(𝜇𝜇𝑖𝑖,𝑀𝑀) =  𝜇𝜇𝑖𝑖 log �𝜇𝜇𝑖𝑖

𝑀𝑀
� + (1 − 𝜇𝜇𝑖𝑖) log �1−𝜇𝜇𝑖𝑖

1−𝑀𝑀
� 

Figure 3: KL-UCB algorithm 

3.2.3 The Thompson Sampling algorithm 
Thompson Sampling(TS) heuristic was proposed by Thompson (Thompson 1933) in 1933 

but remained less popular compared to other MAB algorithms for the lack of proofs on the regret 
bounds which were given very recently(Agrawal and Goyal 2012). Also, the proof for logarithmic 
regret to Thompson sampling has come only recently(Kaufmann, Korda and Munos 2012).It can 
also be argued that TS cannot be ignored for the lack of proofs on the regret for its empirical 
performance (in simulated environments) outperformed a few well known MAB algorithms for 
example UCB. Hence this work considers TS as a competent algorithm to compare with the 
effSAMWMIX. The TS algorithm is given below 

 



  

1. Initialization:   
a. Set 𝛼𝛼,𝛽𝛽 which are the prior parameters for Beta distribution 
b.       Set 𝑆𝑆𝑖𝑖 = 0,𝐹𝐹𝑖𝑖 = 0 ∀𝑖𝑖 where 𝑆𝑆𝑖𝑖 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎 𝐹𝐹𝑖𝑖 𝑖𝑖𝑖𝑖 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

2. Loop: For every round  𝑡𝑡 = 1, … .𝑇𝑇 do 
a. For every arm k= 1, … .𝐾𝐾 do 

i. Draw 𝜃𝜃𝑖𝑖 according to 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑆𝑆𝑖𝑖 + 𝛼𝛼,𝐹𝐹𝑖𝑖 + 𝛽𝛽) 
b. Draw an arm 𝑖𝑖 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥𝑖𝑖  𝜃𝜃𝑖𝑖 and observe the reward 𝑟𝑟 
c. If 𝑟𝑟 = 1 then 𝑆𝑆𝑖𝑖 = 𝑆𝑆𝑖𝑖 + 1 
d. Else  𝐹𝐹𝑖𝑖 = 𝐹𝐹𝑖𝑖 + 1 

Figure 4: Thompson sampling algorithm  

3.2.4 The effSAMWMIX algorithm 
effSAMWMIX is based on SAMWMIX(Abdulla and Bhatnagar 2016).It differs from upper 
confidence bound like algorithms since it avoids  searching for a maximum of a resulting parameter. 
Instead, it picks a ‘soft-maximum’ using a Boltzmann Exploration structure. It calculates a 
probability vector 𝜙𝜙𝑘𝑘 over the set of 𝐾𝐾 arms.This 𝜙𝜙𝑘𝑘 is iteratively updated to obtain a 𝜙𝜙∗which 
associates maximum probability of 1 to the best arm 𝑎𝑎∗ and 0 to the rest of the arms. The equation 
for 𝜙𝜙 is put below 

𝜙𝜙𝑡𝑡+1
𝑗𝑗 = (1 − 𝛾𝛾𝑡𝑡) 𝑒𝑒∑𝜂𝜂𝑡𝑡𝑋𝑋𝑡𝑡

𝚥𝚥 �

∑ 𝑒𝑒∑𝜂𝜂𝑡𝑡𝑋𝑋𝑡𝑡
𝚥𝚥 �

𝑁𝑁
𝑗𝑗=1

  + 𝛾𝛾𝑡𝑡
𝑁𝑁

                    (9) 

 
Where 𝜂𝜂𝑡𝑡 is similar to that of SAMWMIX except that it is parameterized by a  𝑑𝑑𝑘𝑘 which is obtained 
by the utilization of a heuristic. Equation (9), put above, is the same as that of equation (10) in 
SAMWMIX’s original proposition. effSAMWMIX obtains the superiority on how the learning 
parameter 𝛾𝛾𝑡𝑡 is calculated as put below. 

𝛾𝛾𝑘𝑘 = 𝑁𝑁�4+(𝑑𝑑+𝑑𝑑𝑘𝑘)�
𝑘𝑘(𝑑𝑑+𝑑𝑑𝑘𝑘)2−(𝑑𝑑+𝑑𝑑𝑘𝑘−2𝑑𝑑2)

    (10) 

Further, the parameter 𝑑𝑑𝑘𝑘is obtained by using a heuristic to quickly converge without requiring a 
closed form of an equation. The effSAMWMIX algorithm is put below. 

Input : Rewards Vector 𝐺𝐺𝑡𝑡,set of Arms 𝑁𝑁,number of rounds 𝑇𝑇 
1. Using 𝐺𝐺𝑡𝑡 Calculate 𝑑𝑑=min ∆(𝜇𝜇1, 𝜇𝜇2 … . 𝜇𝜇𝑁𝑁) where 𝜇𝜇𝑖𝑖 is the reward mean of Arm 𝑖𝑖. 
2. Calculate  

a. 𝐶𝐶0 = 𝑁𝑁 + 1; 𝜎𝜎2 = 2 ∗ 𝑁𝑁;  
b. 𝜂𝜂0 = 1

𝐶𝐶0
log �1+𝐶𝐶𝑝𝑝∗𝑑𝑑

𝜎𝜎2
� 

c. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = ((4 + 𝑑𝑑) ∗ 𝑁𝑁 + 𝑑𝑑)/𝑑𝑑2 
3. 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 =  1, . . . ,𝑁𝑁 𝑑𝑑𝑑𝑑 

a. Obtain reward 𝑋𝑋𝑡𝑡=𝑖𝑖𝑖𝑖  

b. Initialize 𝜙𝜙𝑡𝑡𝑖𝑖  = 𝜂𝜂0 ∗ �
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑁𝑁
� ∗ (𝑋𝑋𝑡𝑡=𝑖𝑖

𝑖𝑖

1
𝑁𝑁

) 

c. Initialize pull count for  𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑖𝑖  𝑎𝑎𝑎𝑎 𝑝𝑝𝑖𝑖=1   
4. 𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 = (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 1 + 𝑁𝑁), … , (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑇𝑇)𝑑𝑑𝑑𝑑 

a. Obtain random probability 𝑟𝑟 

b. Choose an arm 𝑖𝑖 as winner if ∑𝜙𝜙𝑡𝑡
𝑖𝑖  > 𝑟𝑟 and store reward 𝐺𝐺𝑡𝑡−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑟𝑟𝑖𝑖 = 𝑎𝑎𝑡𝑡∗ and normalize the reward 

using its probability 𝑋𝑋�=𝑎𝑎𝑡𝑡∗/𝜙𝜙𝑡𝑡𝑖𝑖   



  

c. Update 𝑝𝑝𝑖𝑖 = 𝑝𝑝𝑖𝑖 + 1 
d. 𝑓𝑓𝑓𝑓𝑓𝑓 𝑑𝑑𝑡𝑡  =  1, … , 𝑡𝑡−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑇𝑇−𝑁𝑁
𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑑𝑑𝑑𝑑 

i. Calculate 𝑘𝑘𝑡𝑡 = 𝑑𝑑 + 𝑑𝑑𝑡𝑡; 
ii. 𝛾𝛾𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = ((4 + 𝑘𝑘𝑡𝑡) ∗ 𝑁𝑁 + 𝑘𝑘𝑡𝑡)/(𝑡𝑡 ∗ 𝑘𝑘𝑡𝑡2) 

iii. 𝐶𝐶𝑡𝑡 = � 𝑁𝑁
𝛾𝛾𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

� + 1 and 𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
2 = 2 ∗ 𝑁𝑁/𝛾𝛾𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

iv.  𝜂𝜂𝑡𝑡 = 1
𝐶𝐶𝑡𝑡

log �1+𝐶𝐶𝑡𝑡∗𝑘𝑘𝑡𝑡
𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
2 � 

v. ∑𝜙𝜙𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑖𝑖  = ∑𝜙𝜙𝑡𝑡

𝑖𝑖 + 𝑒𝑒∑𝜂𝜂𝑡𝑡𝑋𝑋𝑡𝑡
𝑖𝑖  �

  

vi. If 𝑒𝑒∑𝜂𝜂𝑡𝑡∗(𝑑𝑑𝑡𝑡∗ 𝑋𝑋𝑡𝑡
𝚤𝚤) � + 𝜂𝜂𝑡𝑡∗(𝑑𝑑𝑡𝑡∗ 𝑋𝑋𝑡𝑡

𝑎𝑎𝚤𝚤) �
 > ∑𝜙𝜙𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑖𝑖   then  assign 𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑑𝑑𝑡𝑡 − 𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 
e. Assign  

i. 𝐾𝐾𝑡𝑡 = 𝑑𝑑𝑡𝑡 + 𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 
ii. 𝛾𝛾𝑡𝑡 = ((4 + 𝑘𝑘𝑡𝑡) ∗ 𝑁𝑁 + 𝑘𝑘𝑡𝑡)/(𝑡𝑡 ∗ 𝑘𝑘𝑡𝑡2) 

iii. 𝐶𝐶𝑡𝑡 = � 𝑁𝑁
𝛾𝛾𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

�+ 1 and 𝜎𝜎𝑡𝑡2 = 2 ∗ 𝑁𝑁/𝛾𝛾𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

iv. 𝜂𝜂𝑡𝑡 = 1
𝐶𝐶𝑡𝑡

log �1+𝐶𝐶𝑡𝑡𝐾𝐾𝑡𝑡
𝜎𝜎𝑡𝑡
2 � 

f. Now update 𝜙𝜙𝑡𝑡+1
𝑗𝑗  using (1) which is  

  𝜙𝜙𝑡𝑡+1
𝑗𝑗 =   (1 − 𝛾𝛾𝑡𝑡) 𝑒𝑒∑𝜂𝜂𝑡𝑡𝑋𝑋𝑡𝑡

𝚥𝚥 �

∑ 𝑒𝑒∑𝜂𝜂𝑡𝑡𝑋𝑋𝑡𝑡
𝚥𝚥 �

𝑁𝑁
𝑗𝑗=1

  + 𝛾𝛾𝑡𝑡
𝑁𝑁

       

Output : 𝜙𝜙 vector 
Figure 5: effSAWMIX algorithm  

The performance of the four algorithms in the current context are compared against simulated 
GBM portfolios and real-world benchmark datasets as explained in the following sections. 

4 Experiments 
 Experiments are conducted on both simulated datasets and real-world datasets. The simulated 
datasets are obtained by using Geometric Brownian Motion prediction techniques as explained 
below 

4.1 Stock prediction on Simulated Geometric Brownian Motion Datasets 
 Geometric Brownian Motion (GBM) is also known as Wiener Process in which the logarithm 
of a quantity that varies at random will follow a Brownian Motion(Wilmott 2000).GBM is formally 
a mathematical modeling technique that is often used to predict the short-term stock price 
movement(Ladde and Wu 2009).Since the stock price movement is often unpredictable the GBM’s 
random walk model tends to predict the stock prices with reasonable accuracy(Fama 1995).This 
work considers the GBM technique to build a synthetic dataset to test the performance of the NBP 
algorithm that utilizes effSAMWMIX,UCB1,KL-UCB and TS as the SMAB engine for the NBP. 
The GBM dataset is generated using the daily closing prices which are the input for the GBM 
model. The returns are calculated for each asset using the following equation 

 
𝑅𝑅𝑖𝑖 = �𝑃𝑃𝑖𝑖+1−𝑃𝑃𝑖𝑖

𝑃𝑃𝑖𝑖
�     (11) 

Where 𝑃𝑃𝑖𝑖 is the closing price of the asset on day 𝑖𝑖.If 𝑇𝑇 is the total number of periods where the 
returns are calculated then the mean return 𝜇𝜇 is calculated as follows 

    𝜇𝜇 = 1
𝑇𝑇
∑ 𝑅𝑅𝑖𝑖𝑇𝑇
𝑖𝑖−1      (12) 

Also the standard deviation of all the returns 𝜎𝜎 is calculated as 

    𝜎𝜎 = � 1
𝑇𝑇−1

∑ (𝑅𝑅𝑖𝑖 − 𝜇𝜇)𝑇𝑇
𝑖𝑖−1     (13) 



  

 
If the price of stock at time 𝑡𝑡 is  𝑆𝑆(𝑡𝑡) and a random value generated at that time is denoted by 
𝑋𝑋(𝑡𝑡) then the 𝑆𝑆(𝑡𝑡) is calculated using GBM as follows.  
 
   𝑆𝑆(𝑡𝑡) = 𝑆𝑆(0) ∗ 𝑒𝑒�𝜇𝜇−0.5𝜎𝜎2�𝑡𝑡−𝜎𝜎[𝑋𝑋(𝑡𝑡)−𝑋𝑋(0)]    (14) 

4.1.1 Experimental Settings & Simulation results 
From the S&P 500 Stock dataset(Bruni, Cesarone, Scozzari and Tardella 2016) we have 

randomly picked 𝑛𝑛 stocks from the same so that the SMABs will have 𝑛𝑛 choices(arms) to choose 
from. Each of the stocks have the periodic closing prices from November 2004 to April 2016.The 
𝜇𝜇 &  𝜎𝜎 are calculated for each of the 10 stocks and a new set of closing prices are predicted using 
GBM prediction equation (14). This newly generated stock price closing data will now be the 
dataset on which the NBP’s performance is evaluated when the NBP uses a different SMAB for 
decision making process. The naming convention for the GBM simulated portfolio dataset with 5 
assets 𝑛𝑛 = 5 is GBM05 and that with 15 assets 𝑛𝑛 = 15 is GBM15.The results of the experiments 
on GBM05 and GBM15 datasets are put below. Also effSAMWMIX employed inside NBP is 
henceforth addressed as NBP-effSAMWMIX. Similarly, NBP-UCB1 indicates that UCB1 is 
employed inside NBP. The other two algorithms are denoted as NBP-KLUCB and NBP-TS where 
KL-UCB and TS are employed inside NBP respectively. 

Table 1: Terminal Cumulative Wealth on GBM Datasets. 

  Cumulative Wealth($) 

  
Market B&H 

Strategy NBP-UCB1 NBP-KLUCB NBP-TS 
NPB-

effSAMWMIX 
GBM05 
Dataset 1.173561174 1.3789034 0.862313301 1.51668599 1.621277794 
GBM15 
Dataset 1.288151551 1.402418615 1.559731636 1.704466302 1.786662446 

 

 
Figure 6: Cumulative wealth curves across the investment periods on GBM05 dataset 

 NBP-effSAMWMIX performed better than when NBP-UCB1, NBP-KLUCB, NBP-TS. 
Also, NBP-effSAMWMIX has acquired a better CW than the Market Buy & Hold Strategy(Li and 
Hoi 2014).Results are similarly favorable for  NBP-effSAMWMIX when simulated portfolio 
consisted of 15 assets (see Fig.7.).The terminal cumulative wealth acquired per a unit investment 
is shown in Table 1. 



  

 

Figure 7: Cumulative wealth curves across the investment periods on the GBM15 dataset. 

4.2 Stock prediction on real-world benchmark datasets 
We choose benchmark datasets from (Bruni, Cesarone, Scozzari and Tardella 2016) and (Li, 

Sahoo and Hoi 2016) where the datasets are validated for the comparative performance of portfolio 
selection models. These datasets are generated using real-world price values obtained from major 
stock markets. They are reported to contain error-free cleaned data of weekly return values which 
are adjusted for dividends and stock splits. These publicly available datasets help in an unbiased 
comparison of the different NBP-SMAB portfolio selection strategies that are tested in this work. 
We chose these datasets to get a variety of data in terms of region, market type, the number of 
assets and the number of periods. For example, MSCI measures the equity market performance of 
global emerging markets and DJIA gives the stock market data from the USA which is a developed 
economy.  Table 2. provides the details of the datasets under consideration for this work. 

 
Table 2: Summary of the four benchmark datasets from real markets. 

Dataset Market Region Time Frame # Periods # Assets Reference 

DJIA Stock USA 
01/14/2001 - 
01/14/2003 507 30 

(Li, Sahoo and Hoi 
2016) 

TSE Stock CANADA 
01/04/1994 - 
12/31/1998 1259 88 

(Li, Sahoo and Hoi 
2016) 

NASDAQ100 Stock USA 
06/2002 -
04/2016(weekly) 596 82 

(Bruni, Cesarone, 
Scozzari and 
Tardella 2016) 

MSCI Index Global 
01/14/2001 - 
01/14/2003 507 30 

(Li, Sahoo and Hoi 
2016) 

 
We report (Table 3.) the terminal cumulative wealth achieved by each of these algorithms over 

the four benchmark datasets mentioned above. Apparently, NBP-effSAMWMIX has achieved the 
highest cumulative wealth when compared to other NBP algorithms. Except in the case of 
NASDAQ100 dataset, NBP-effSAMWMIX has performed better than the Market Buy & Hold 
strategy as well. 

 



  

 
Figure 8: Cumulative wealth curves across the investment periods on DJIA dataset. 

 
Figure 9: Cumulative wealth curves across the investment periods on TSE dataset. 

 

Figure 10: Cumulative wealth curves across the investment periods on NASDAQ100 dataset. 



  

 
Figure 11: Cumulative wealth curves across the investment periods on MSCI dataset. 

 
Figures 8-11 show the time series curves of the CW achieved over the investment periods. 

NBP-effSAMWMIX has performed comparatively with NBP-TS on DJIA and TSE datasets but 
has a distinguishably better performance on MSCI dataset. On the NASDAQ100 dataset, the 
Market Buy & Hold strategy is a clear winner from the early investment periods and none of the 
NBP algorithms could match its performance. Except for this one case, NBP-effSAMWMIX 
achieved the highest wealth level in all the datasets including the simulated GBM datasets. 

Table 3: Terminal Cumulative Wealth on Benchmark Datasets. 

  
Cumulative Wealth($) 

Market B&H 
Strategy NBP-UCB1 NBP-KLUCB NBP-TS NPB-

effSAMWMIX 
DJIA 0.807213277 0.607567206 0.804983186 0.8409141 0.898913847 
TSE 1.744441602 2.073821019 1.807159136 2.105704114 2.468557904 
NASDAQ100 4.436306307 0.964635451 2.280205468 2.578221404 3.559058958 

MSCI 0.890717018 0.945641382 0.886583483 0.955732983 1.226302272 

5 Conclusion 
 In this work, we report the implementation of the effSAMWMIX inside of a Naïve Bandit 
Portfolio algorithm. effSAMWMIX which has a regret of 𝑂𝑂(log𝑇𝑇) where 𝑇𝑇(we will put our 
working paper reference here) is shown to perform better than KL-UCB and Thompson Sampling 
on a few popular reward distributions. This work intends to exploit this advantage (of 
effSAMWMIX’s performance) over competing SMAB algorithms reported in the literature. Along 
with NBP-effSAMWMIX, the NBP versions of KL-UCB and Thompson Sampling are evaluated 
for the first time in literature. We report the cumulative wealth data on both simulated and 
benchmark real-world datasets so as to concretely report the empirical performance of the proposed 
algorithm. The performance on NASDAQ100 dataset opens up the need to further asses the dataset 
so as to analyze why none of the NBP algorithms could beat the Market Buy & Hold strategy while 
they could in the rest of the cases. This could be because NBP does not consider asset correlations 
while making the decision. To further this work, we intend to do an Orthogonalization of the 
portfolios in order to remove the correlation and evaluate the performance of effSAMWMIX in 
such a scenario. 
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