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Abstract. The In this paper a novel hybrid evolutionary algorithm (HEA) 
method is used to find optimal feedback gains for inverse dynamics controllers. 
It is shown that HEA efficiently finds the optimal feedback gains to improve 
the performances of inverse dynamics controllers for end-effector tracking con-
trol in highly complex, nonlinear, multi-arm manipulator systems. The feed-
back gain tuning is studied for constrained, co-operating manipulator systems 
for both fixed-base and free-floating, multi-arm, space manipulator systems un-
der zero gravity.  

1   Introduction 

The inverse dynamics control algorithms used to control robot manipulators are pri-
marily concerned only with decoupling and compensating the nonlinearities. In order 
for inverse dynamics controllers to be able to improve the overall performance of the 
system, they must be given tunable controller parameters. The controller parameters 
are usually decided by trial-and-error through extensive simulations and experiments. 
But, in the case of multi-arm manipulator systems, selecting good controller parame-
ters by a trial-and-error process becoming excessively difficult. Thus, the PD-based 
inverse dynamics controllers for robot control normally use only two parameters, one 
each for the proportional and derivative part. In contrast, controlling complex, multi-
arm manipulator systems with only two gains may not be sufficient to provide the 
desired precision. On the other hand, using a number of gains that is equal to the 
number of controlled variables increases the complexity of finding optimal gains to 
an even greater extent. In addition, with the increase in the number of parameters, the 
search space increases rapidly, thereby increasing the problem complexity. Further, it 
has been shown that the computational complexity of multi-arm manipulator systems 
is very high, and when combined with evolutionary tuning, the overall computational 
requirements increase by a large extent [1]. Hence, even though using only two gains 
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makes control difficult, the use of more than two gains makes the computational bur-
den unmanageable.  

Evolutionary computation (EC) methods have previously been applied to tune the 
feedback gains of only relatively simple robotic manipulator systems. Kim and Shim 
[2] used an evolutionary programming method to tune gain levels of a mobile robot 
posture controller with an aim to achieve shortest paths using minimum time and 
energy. Ge et al. [3] reported the gain tuning of single link flexible manipulators 
using a real number GA. They experimented on a task of controlling the tip of the 
manipulator to reach a predefined position in minimum time with minimal overshoot 
and oscillation. Katic [4] reported a connectionist controller design for a robotic sys-
tem applied to a compliant task by combining a real-valued GA with neural classifi-
cation and learning control techniques. The GA is used to tune the feedback control-
ler gains, neural topology, and weights. Porter and Allaoui [5] used an adaptive 

)( λµ + evolutionary method without recombination to design proportional, integral, 
and derivative (PID) controllers for a three-joint revolute robotic manipulator. The 
developed controller was used for the tracking control of the end-effector along a 
straight-line trajectory.  

Inverse dynamics controllers use the entire dynamic model of complex manipula-
tor systems to control their motion. However, the model of a multi-arm manipulator 
system requires the computation of many vector and matrix operations that automati-
cally demands higher computational power [1]. The complex mathematical represen-
tation issues of the dynamics of multi-arm manipulator systems are discussed in sec-
tion II. Further, during the evolutionary tuning of the feedback gains, it is necessary 
to compute all the model calculations repeatedly. Thus, the computational require-
ments increase enormously. This might be the reason why EC methods for the tuning 
of the gain parameters have been restricted to comparatively simple single-arm ma-
nipulator systems comprising of very few links. Further, the problems of standard EC 
methods for the tuning of the feedback gains of multi-arm manipulator systems are 
due to their high computational requirements, low convergence rate and premature 
convergence. Thus, efficient EC-algorithms are needed that can efficiently address 
the gain tuning of multi-arm manipulator systems. Hence, to meet this need a highly 
efficient hybrid evolutionary algorithm (HEA) has been developed to search for the 
optimal feedback gains of the inverse dynamics controllers. The faster convergence 
and high accuracy features of HEA compared with other EC methods can address the 
computational complexity arising due to the complex mathematical model of the 
multi-arm manipulator systems. These issues are further discussed in section III. 
Subsequently, the design issues pertaining to the evolution-based inverse dynamics 
controllers are discussed in section IV. The experimental set-up and other system 
parameters needed for the numerical simulation of the evolutionary gain tuning pro-
cedure and subsequent control of multi-arm manipulator systems are presented in 
section V.  Then, in sections VI, the results of the numerical simulations are presented 
for unconstrained manipulators and constrained, co-operating, manipulator systems, 
respectively. Finally, in section VII, conclusions of this research work are presented. 
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2   Multi-arm Manipulators  

2.1   Dynamic Model  

A generalized representation of the dynamic model of a multi-arm, co-operating ma-
nipulator system can be expressed by the following set of equations [1]: 

T̂ - TJ ef = M q&&  + C , 
eV&  = W oV&  + W& oV  

                                    = bJ bV&  + qJ q&&  + bJ& bV  + qJ& q& , 

oM oV&  + ob  = TW ef , 

(1) 

where M  =  TΦ TX ( 1
q
−M  + bX 1

b
−M T

bX )-1 X Φ  is the generalized inertia ten-

sor, TJ  = TΦ TX  ( 1
q
−M  + bX 1

b
−M T

bX )-1 1
q
−M D  is the transpose of the general-

ized Jacobian matrix; C = TΦ TX  ( 1
q
−M  + bX 1

b
−M T

bX )-1 { bX& bV  + 1
q
−M b -

bX 1
b
−M bb  + X& Φ q& } is the coriolis and centrifugal  force vector;  T is the 

torque vector, bV  and eV  are the base and end-effector velocity vectors, respec-

tively; bV& , eV&  and  oV&  are the base, link and object accelerations, respectively; 

bJ  and qJ  are the base and link Jacobian matrices representing the end-effector 

velocity in the end-effector frame; TW  is the transformation matrix that transforms 
end-effector quantities onto the object center of mass; ef  is the end-effector force, 

oM  is the object inertia matrix; and ob  is the object bias force vector.  All the quan-
tities for an m-manipulator system with n-links each are based on the following defi-
nition [1]: 

X  = diag( 1X … mX ) is the composite link transformation matrix, Φ  = 

diag( 1Φ …. mΦ ) is the composite modal matrix, q&  = [ T
1q& …. T

mq& ]T is the compos-

ite joint velocity vector, b  = [ T
1b … T

mb ]T is the composite link bias force vector, 

B = diag( 1B … mB ) and qM  =  diag ( 1M … mM ), and where 

2nd Indian International Conference on Artificial Intelligence (IICAI-05)

56



 X j  = 

1
1

j

1
2

j 2
2

j

1
n

j 2
n

j n
n

j

X 0 0 0
X X 0 0

X X X

. . .

. . .
. . . . . . .
. . . . . . .

. . . .























, 

(2) 

 

jΦ  = diag( j
1Φ … j

nΦ ), jb  = [ T
j

1b … T
j

n b ]T,  jB = [0…0 j
1+n
n X ] and jM  = 

diag( j
1M … j

n M ). 

The spatial velocity, acceleration and force vectors of the ith link of the jth robot 
resolved in the ith link frame are defined by 6×1 vectors j

i V , j
i V&  and j

i f , respec-

tively, and j
iΦ  represents the matrix of free mode vectors of the ith joint of the jth 

robot. The 6×6 spatial transformation matrix j
i
1i X−  transforms a spatial vector from 

the (i-1)th co-ordinate frame to the ith co-ordinate frame of the jth robot and is de-
fined as  
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where j
i
1i R−  is a 3×3 rotation matrix from the (i-1)th link frame to the ith link frame 

for the jth robot; j
i
1i p− is a 3×1 vector from the origin of the (i-1)th link frame to the 

origin of the ith link frame for the jth robot; p~  for a vector p = [ ]Tzyx ppp is a 

3×3 anti-symmetric matrix defined as 
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(4) 

The 6×6 spatial inertia matrix of the ith link of the jth robot is denoted by j
i M  and 

is defined as  
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where j
i m  is the mass of the ith link of the jth robot; j

i I  is the inertia tensor of the 

ith link of the jth robot at the ith frame origin; j
c
i l  is the distance from the ith frame 

origin to the center of mass of the ith link of the jth robot; and E 3 is a 3×3 identity 
matrix.  

2.2   Inverse Dynamics Controllers 

The block diagram representation of the inverse dynamics control method for co-
operating manipulators is shown in Fig.1. The controller accepts the values of all the 
desired and actual object and/or base position and orientation related information 
along with the end-effector forces to calculate the resolved acceleration vector a. 
Then, the block representing the inverse dynamics control law provides the necessary 
torques to be applied to the active joints and/or base. The inverse dynamics controller 
compensates the motion-inducing component m

ef of the end-effector force ef ( ef = 
m
ef  + i

ef ) and allows the uncompensated internal forces i
ef  to maintain grip on the 

object. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1. Block diagram of inverse dynamics control scheme for co-operating manipulator sys-
tems. 

3   Hybrid Evolutionary Algorithm 

The hybrid evolutionary algorithm (HEA) [7] is based on the concept of pseudoglobal 
optimum. The pseudoglobal optimum is defined as the optimum individual in a par-
ticular generation of any population-based algorithm [6]. Usually, the global optimum 
of the problem at hand is not known in advance, hence in each generation the fittest 
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individual is identified as the global optimum for that generation, which is known as 
the pseudoglobal optimum. Thus, the pseudoglobal optimum is dynamic in nature. 
Now, in each generation, every individual’s goal is to achieve the pseudoglobal posi-
tion. This is achieved by varying the step size in proportion to the absolute genotypic 
distance of each object variable from the respective object variable of the fittest indi-
vidual. This allows independent variations for each object variable of an individual. 
This feature can be represented by a factor ijσ : 

      

ijσ  ∝  |pij - pkj|,       (6) 

where pkj is the kth row and jth column element of  an µ × on  population  matrix P, 
with µ  and on  as the number of individuals in the population pool and the number 
of object variables in an individual, respectively; k is the index for the best quality 
individual; and |.| denotes  an absolute value.  
Hence, Eq.(6) can be represented as  

ijσ   = k |pij - pkj| ,  (7) 

where k =
π
ωβ   is a proportionality constant, with β  = 0.1 and ω  as  the width 

of the user defined search domain. 
 Then, to direct the solution in the direction of the pseudoglobal optimum so as to 

speed up the process of convergence, a directionality feature associated with each  
pair of individual parent genes has been introduced, determined with respect to the 
genes of the pseudoglobal optimum individual. The direction (or the sign) of the 
generated absolute Gaussian random variable is decided according to the position of 
the particular genes of the parent individual with respect to the genes of the pseu-
doglobal optimum. This directionality feature can be expressed as 

dir(pij) = sgn(pij - pkj) , (8) 

where "sgn" calculates the sign of the argument within the bracket. 
 In Eq.(7), the genotypic distance for the best  quality  individual  in  the  popula-

tion pool is zero, which  in  turn  forces  ijσ  to zero. This does not update the object 
variables of the fittest individual. This is undesirable in the context that the fittest 
should have more opportunity to exploit its own neighborhood to generate better 
offspring (local search). To circumvent this, a constant offset z has been introduced. 
Hence, for the fittest individual ijσ = z, this small standard deviation increases the 

probability of producing offspring in a very close vicinity of the parent. Whereas, for 
other individuals, the exploration of new and unknown areas of the search domain 
increases as the genotypic distance increases that progressively decreases the exploi-
tation capability. Now, ijσ  can be written as  
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ijσ   = k |pij - pkj | + z. (9) 

The standard Cauchy  random variables ijC (0,1), ∀ i ∈ {1, …, µ } and ∀ j ∈ {1, 

…, on } are used to guide the search process to generate  offspring. Hence, the off-
spring can be represented as  

pij  = pij - ijσ dir(pij ) ijC  (0,1). (10) 

Because the crossover operator generates offspring within a defined initial rectangu-
lar hyperbody, this effectively generates offspring constrained to lie within the parent 
object boundaries. However, in the proposed DSR operator without the directional 
feature, the offspring can be anywhere in the search space. The incorporation of the 
directional feature provides a restriction on the generated offspring such that the off-
spring will no longer be generated in the direction quite opposite to the fittest indi-
vidual. Thus, it adds the ability to explore the search space more than that of the con-
ventional recombination operators used in ES. Between a parent and its offspring, the 
fittest survives, which makes the operator elitist. 

 The mutation operation used here is similar to that used in a basic EP [8]. Here, a 
problem dependent deterministic factor γ  has been formulated, which is then used 
along with the  randomness of the standard Cauchy distribution C(0,1) to escape from 
the local optima so that there is increased probability of directing  the solution proc-
ess toward the global optimum. Here, γ  is selected such that it is directly propor-
tional to the square root of the fitness score and inversely proportional to the problem 
dimensions, and is defined for the ith individual as 

γ i in
f p∝

1 ( )  =  )(
0

ipfn
α

, 
(11) 

where f pi( )  is the fitness score associated with the ith individual and α  = 0.01 is a 
proportionality constant. Hence, the search step size ∆ xij can be represented as 

∆ xij  = ijC (0,1) )( ipf
on
α

. 
(12) 

As ∆ xij is related to the individual fitness score, it will suffer from the problems of 
solution instability for higher dimensional tasks [6].  This problem has been ad-
dressed here by limiting the variation to lie within twice the user-supplied search-
width when the fitness score exceeds ten times the value of the search width. This 
also ensures that  no portion  of the search space is omitted. Hence, the jth object 
variable of the ith offspring generated from the corresponding object variable of the 
ith individual pi  can be represented as 
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Then a stochastic selection [8] is used to select m parents for the next generation.  

4   Evolutionary Controller Design 

The inverse dynamics controllers used for the control of fixed-base and free-floating 
systems are always exponentially stable for any positive, definite, and constant feed-
back gain matrices Kp and Kd. Now, arbitrarily selected positive values for Kp and Kd 
matrices do not necessarily yield better performance in terms of rise time, overshoot, 
and settling time. In addition, the number of tuning parameters should always be as 
small as possible for engineering implementations. In this case, the minimum number 
of tuning parameters is two, i.e., one kp and one kd for all the control variables of all 
the manipulators. 

Usually, kp and kd values are selected by running the simulation for many different 
kp and kd values, and those values of kp and kd which yield the best tracking perform-
ance are chosen as the final values. Indeed, the kp and kd values were selected exactly 
this way for the conventional inverse dynamics controllers. However, for the evolu-
tion-based inverse dynamics controllers, the tuning parameters kp and kd are selected 
by taking advantage of the highly efficient and fast hybrid EA (HEA) described 
above for the tracking control of complex multi-arm manipulator systems. The higher 
speed and sharp convergence features of HEA have been utilized fruitfully to yield 
better controller performance for highly complex multi-arm manipulator systems.  

The major problems of multi-arm manipulator systems are their high computa-
tional costs and time requirements to perform the complex computations. Hence, 
these problems become increasingly difficult when EC methods run the entire ma-
nipulator simulation repeatedly while tuning the gains. This problem can be ad-
dressed from two angles: (i) using fast and efficient EC-based methods; (ii) using 
only a small part of the manipulator simulation to guide the feedback gain optimiza-
tion process. The first issue has been addressed with the use of a very fast and effi-
cient EC-based algorithm called hybrid evolutionary algorithm (HEA). The second 
issue can be addressed by allowing the manipulator simulation program to run only 
for the first few seconds. Ideally, this initial run time is taken to be equal to the time 
period with hand-tuned parameters within which the system error characteristics settle 
close to the minimum value (i.e., zero in the case of inverse dynamics controllers) [3]. 
However, the non-optimal gain parameters for trajectory tracking applications, where 
the orientations are also time varying, exhibit a large settling time with prominent 
steady-state error [1]. This time period can typically be taken as 2 sec [3]. But for a 
two second period with sampling time of 0.001sec, it is necessary to calculate the 
manipulator simulation 2000 times up to a period of two seconds. Thus, this issue 
should be taken into consideration while designing EC-based inverse dynamics con-
trol algorithms to control multi-arm manipulator systems. 
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The most important part of any evolutionary method is the fitness evaluation. In the 
feedback tuning, the fitness is evaluated through the simulation of the manipulator 
system. For clarity of understanding, the pseudocode of the fitness evaluation during 
the feedback gain tuning of the multi-arm manipulator systems is shown in Table 1. 
The total fitness score of each individual is the sum of the absolute values of the er-
rors in all the controlled variables. Thus, the fitness-score assigned to the ith gain 
individual is denoted by Fiti and is defined as 

Fiti = ∑
=

cn

1k
k |e| ,   

(14) 

where cn  is the number of controlled variables, and ke  is the error associated with 
the kth control variable.  

Table 1. Pseudocode of fitness evaluation 

 
Input: 

pk , dk , integration step size = step_size = 0.005; 

Fitness Score: 
for i := 1 to µ  do 

Initialize(); // Initialize Manipulator Parameters 
Abs_error = 0.0; // Total Absolute Error 

for t := 1 to maxt  do   // maxt  is the maximum time allowed for each gain tuning 
Path(t); // Define Trajectories 

ModelParm(); // Define the Manipulator Model Parameters 
Controller(); // Inverse Dynamics Controller 

Abs_error = Abs_error + sum of absolute errors on 
all the controlled variables; 

RungeKutta(&t, step_size); // Integrate the States 
Fit [i]  = Abs_error; // Fitness Score 

 

5 Numerical Simulation 

5.1   Set-up 

A two-arm manipulator system with three links per manipulator holding an object has 
been used to verify the effectiveness of the evolution-based inverse dynamics control-
lers. All the joints are assumed to be one-degree-of freedom rotational joints with 
rigid links. The two-arm co-operating manipulator system is shown in Fig.2. 

2nd Indian International Conference on Artificial Intelligence (IICAI-05)

62



Two manipulators are mounted on a free-base with a base frame b∑  defined at the 
center of mass (CM) ‘B’ of the free base. All the links are assumed to be of equal 
length j

1k
k l+  = 1.0 m. ∀ j ∈ {1, 2} and ∀ k ∈ {1, …, 3}. The mass and inertia of 

each link are j
k m  = 1 Kg. and j

k I  = 0.33 Kg-m2, ∀ j ∈ {1, 2} and ∀ k ∈ {1, …, 

3}, respectively. It is assumed that both the manipulators are mounted on the base 
such that their distances from the  CM of the base ‘B’ are equal. Here, this distance 

j
1
b l  = 1.5m, ∀ j ∈ {1, 2}. The mass of the base bm  = 200 Kg, and its inertia bI  = 

40 Kg-m2. The mass of the object  om  = 2 Kg, and  inertia oI  = 0.5 Kg-m2. Initially,  
the  object  center-of-mass  was at   (0.0, -1.7320508, 0.0) metres. Corresponding to 
the object position, the joint angles of manipulator 1 and 2 were (-1.0471976, -
1.0471976, -1.0471976) radians and (-2.0943951, 1.0471976, 1.0471976) radians, 
respectively. The initial object orientation about the z-axis of the base frame b∑  was 
zero radians. Also, the orientations of the base frame b∑  with respect to the world 
reference frame w∑  of all the axes were zero radians. For a fixed-base manipulator 
system, b∑  and w∑ were chosen to be coincident with each other. The sampling 
time for all the simulations described in this research were fixed at 0.001 sec. The 
diagonal elements of the controller gain matrices pK  and dK  were set to 16 and 10, 

respectively, for all the simulation work for the conventional inverse dynamics con-
trollers. 

 
 
 

 
 
 
 

 
 
 
 

Fig. 2. Two-arm three-link co-operating manipulator system 

Every individual in HEA consisted of proportional ( pk ) and derivative ( dk ) con-

troller gains. Only one pk  and one dk  value were used for all the control variables. 
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Thus, the number of variables per individual was two. The population pool consisted 
of twenty individuals. HEA was run for thirty generations for all the problems. The 
number of individuals and generations were so chosen for two reasons. The first 
reason is that, in most of the simulation cases, the improvement in error was almost 
negligible after twenty generations. Secondly, it was observed that it took nearly 
seventy two hours on a Pentium II, 350 MHz processor for the completion of thirty 
generations.  The constant offset zc was set to 10-4. The major problem with gain 
parameter tuning is that there is no fixed feasible region within which the search 
process can be bound. Hence, an arbitrary feasible region (0, 50) was adopted for the 
initialization of pk  and dk  values. Further, only positive values were allowed, as 

positive values can yield uniform stability for the inverse dynamics controller [1]. 
Thereafter, no such bounds were applied on the search process, i.e., the search proc-
ess was allowed to search through the entire positive real number space, and in the 
event of any negative gain values, the gain was given an arbitrarily low value of 
0.001. However, very large values of pk  would result in large control torques that 

might exceed the actuator saturation values. In order to overcome this problem, the 
torques were constrained to lie between the actuator limits. Thus, a torque was repre-
sented as 

| T | ≤ maxT ,  (15) 

where maxT  is the maximum torque value that can possibly be applied to safely drive 
the manipulator joints by the control motors. In this study, | maxT |  = 50.0 Nm. For 
the fitness evaluation, the manipulator simulation was run for a time of maxt  = 
0.5sec with a sampling time of 0.005sec. In the simulation studies of controller pa-
rameter optimization, the aim was to minimize the errors in the end-effector/object 
position and orientation. Thus, the fitness value of each individual was the sum of the 
absolute errors in all the end-effector/object control variables. Further, in the case of 
free-flying manipulator systems, where it was desired to keep the base in its original 
position, the errors in the base control variables were also included in the fitness 
calculations. 

5.2   Test Problem 

The test problem chosen to verify the performance of the inverse dynamics control 
algorithms with motive force compensation is the circle problem, with the desired 
trajectories of the object specified by 

γ  =  r1 sin(ξ t) 
         px =  d  +  r cos(ξ t) 
         py =  -h  +  r sin(ξ t) 

where r is the radius of the circle with center at the co-ordinate point (d, h), r1 is the 
amplitude of the orientation variation, ξ  = kπ , with k as a constant, γ  is the end-
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effector orientation about the z-axis, and px and py are the x- and y-positions of the 
end-effector. Here, the parameters of the circle were taken as r = 0.2m, r1 = 0.1m,  (d, 
h) = (0.0, -1.5) and k = 1.  

In essence, for a co-operating manipulator system holding a common object 
whose motion is controlled along the desired path given above, there are two position 
constraints along the x- and y-axes, and one orientation constraint. Further, there are 
three internal forces i

x,ef , i
y,ef , and i

,ef γ , respectively, due to the three lost degrees 
of freedom in the presence of constraints. These internal forces cancel each other and 
are essential to hold the object rigidly.  

6 Results and Discussions 

6.1   Fixed-base Two-arm Co-operating Manipulator System 

The performance of the conventional inverse dynamics controllers for a two-arm co-
operating manipulator system rigidly holding an object that tracks a circular contour 
in space is shown in figs.3 to 7. Fig.3 (a) shows the position and orientation tracking 
performance of the object. The tracking errors are presented in Fig.3 (b). These re-
sults show that the object tracks the desired trajectories perfectly. The circular con-
tour tracking in the x-y co-ordinate plane is shown in Fig.4. The actual trajectory 
represented by the dashed lines tracks the desired circular contour represented by the 
solid line in spite of starting at a completely faraway location. Also, the velocity 
tracking performance is very good, as shown in Fig.5. The input torques are shown in 
figs.6 (a) and (b). It can be observed from these figures that the second manipulator 
requires larger torques than the first manipulator. Figs.7 (a) and (b) show the internal 
forces created during the tracking process. These figures clearly show that the internal 
forces cancel each other at every instant of time. 
 

(a) Position and Orientation 
Tracking 

 
(b) Position and Orientation Error 

Fig. 3. Response of object position and orientation for a fixed-base configuration. The dashed 
lines indicate desired and the solid lines indicate actual 
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Fig. 4. Motion of the payload in 
Cartesian space for fixed-base  

 
Fig. 5. Object velocity tracking for fixed-
base  

 

(a) Manipulator 1 (b) Manipulator  2 

Fig. 6. Torque profiles for the fixed-base configuration 

(a) At End-effector 1 
 

(b) At End-effector 2 

Fig. 7. Internal forces at the end-effector frames for a fixed-base configuration 

The evolutionary tuning of the feedback gains pk  and dk  is presented in Figs.8 (a) 

and (b). The gain values for pk  and dk  after thirty generations were 42950.816466 

and 312.897062, respectively. The generation best and average total absolute error 
characteristics are shown in Fig.9. This shows that the evolutionary learning con-
verges around twenty generations. Fig.8 clearly shows that the pk  and dk  values 
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vary significantly after the 20th generation in spite of the total absolute error value 
being constant. This indicates that there are many combinations of pk  and dk  values 

that yield almost identical performance with apparently different controllers. The 
performance characteristics with these values of pk  and dk  are shown in Figs.10 to 

14. The position and orientation tracking characteristics and their errors are shown in 
Figs.10 (a) and (b), respectively. These figures indicate that the errors drop to the 
zero value almost instantly (around 0.02sec), and the end-effectors accurately tracked 
the desired trajectories. Whereas, in the case of hand-tuned controllers as presented in 
Figs.3 (a) and (b), the settling time was around two seconds.  This excellent tracking 
performance is further illustrated in Fig.11, which shows the circular contour tracking 
in the x-y plane. In the case of instantaneous tracking of desired circular trajectories 
where the initial positions (at 0th instant of time) are away from the required circular 
contour, it is quite obvious that greater torques will be needed and thus the initial 
velocities will be higher until the desired contour is reached. This is confirmed by the 
velocity and torque profiles shown in Figs.12 and 13 respectively. Fig.13 in particular 
shows perfect velocity tracking performance once the end-effectors have moved onto 
the desired circular trajectory. 

Apart from the initial time period of 0.02sec, the torque requirements are almost 
identical to those in the hand-tuned case. Further, the large initial values of torques, 
which directly control the magnitude of end-effector forces acting on the object and 
which in turn control the magnitude of internal forces on the object, induce relatively 
large values of internal forces. This is shown in Fig.14. Here, it is important to note 
that, whenever it is required to have smaller internal forces, the same method can be 
used directly with lower active torque limits. In this simulation, the torques limits 
were ± 50 Nm. 
 

Fig. 8.(a) Best proportional gains for 
the fixed-base, co-operating system 

Fig. 8.(b) Best derivative gains for the 
fixed-base, co-operating system 
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Fig. 9. Best and average of the total absolute errors for the fixed-base, co-
operating system 

 
 

(a) Position and Orientation Tracking 
 

(b) Position and Orientation Error 

Fig. 10. Response of object position and orientation for a fixed-base configuration. The dashed 
lines indicate desired and the solid lines indicate actual 

 
Fig. 11.  Motion of the payload in  
Cartesian space for the fixed-base  
configuration 

 Fig.12. Object velocity tracking for 
fixed-base configuration 
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(a) Manipulator  1  
(b) Manipulator  2 

Fig. 13. Torque profiles for the fixed-base configuration 

(a) End-effector 1  
(b) End-effector 2 

Fig. 14. Internal forces at the end-effector frames for a fixed-base configuration 

6.2    Free-floating Two-arm Co-operating Manipulator System 

Interestingly enough, all the performance characteristics for the free-floating system 
exactly matched those for the fixed-base manipulator system. Hence, those figures are 
not repeated. Essentially, this shows that, in free-floating, co-operating space manipu-
lator systems, the tracking control does not need any extra energy to perform exactly 
the same job compared to the fixed-base co-operating manipulator systems. The base 
motion with conventional inverse dynamics controllers while tracking the circular 
contour is shown in Fig.15. Also, the forces of interaction between the manipulators 
and the base are shown in Fig.16.  
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Fig. 15. Base motion in the free-
floating configuration 

 
Fig. 16. Base interaction forces in the 
free-floating configuration 

 
 
In the case of evolution-based inverse dynamics controllers, all the performance char-
acteristics were also exactly the same as for the fixed-base, co-operating manipulator 
systems. Hence, only the base interactions, which are not present in its fixed-base 
counterpart, are shown in Figs.17 and 18. Comparing the base motions of evolution-
ary-tuned and hand-tuned control systems shows that the displacement in the y-
direction in the former case is greater compared to the latter case and vice-versa. 
Throughout the simulation period, the base interaction forces in the case of the hand-
tuned system are slightly less than those of the evolutionary-based system. However, 
all other performances in the fixed-base case are extraordinarily better, as discussed 
before. 
 
 

Fig. 17. Base displacements in the 
free-floating configuration 

 
Fig. 18. Base interaction forces in the 
free- floating configuration 

7 Conclusions 

In this paper, the most difficult part of any inverse dynamics controller, the feedback 
gain tuning, has been discussed. A highly efficient hybrid evolutionary algorithm 
(HEA) was used to tune the feedback gains. The higher speed and greater accuracy 
features of HEA were utilized to tune the gains within a few generations. It was ob-
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served that twenty generations with a population size of only twenty individuals are 
sufficient to find the optimal gains of complex, multi-arm manipulator systems. In all 
the simulations, the limits on the motor torques were the only mechanism used to 
avoid limit any exceptionally rise of proportional gains. Such limiting values of the 
torques also limit the end-effector and internal forces in a co-operating manipulator 
system. In all the simulations, the aim was to verify the potentials of the HEA method 
for gain tuning to improve the end-effector position and orientation tracking perform-
ance. For co-operating, fixed-base and free-floating manipulator systems, the tracking 
performance with evolution-based controllers was very good. Overall, it was shown 
that the system performances were greatly improved with evolutionary tuning. 
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