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This paper describes the design and tuning of a fuzzy logic controller (FLC) for controlling the level of water
on real time basis, in a laboratory scale pilot plant using genetic algorithm (GA). Selection'of appropriate
membership functions (MFs) for an FLC is iterative and a time consuming task. Here, MF of the FLC
condition and action variables are selected optimally by using genetic algorithm, a probabilistic search
technigue inspired by mechanisms of natural selection and genetics. The optimal selection of MFs is made
by minimizing integral time square error (ITSE), an indication of FLC performance. The performances of
both genetic algorithm based FLC (GA-FLC) and traditional FLC are compared.
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INTRODUCTION

Despite the advancements of control theory in the last three
decades, a large class of problems are solved by heuristics,
developed by practicing engineers and operators over the
years. Fuzzy logic is a technique which incorporates above
heuristics into automatic control. Fuzzy logic is used to con-
trol highly nonlinear, complex systems or systems whose
mathematical models are not known. Also in the situations
where classical control methods are available, fuzzy logic is
intorduced to imporve the controller performance and in some
cases to simplify the control algorithm. It is verified experi-
mentally, that the fuzzy controllers perform better than or as
good as a PID controller'™. For proper design of fuzzy logic
controller (FLC), the membership functions (MFs) should be
tuned until MFs perform acceptably for a spectrum of condi-
tions that could exist in the controlled system. FLCs incorpo-
rate the linguistic relations between process input and output
variables through linguistic terms such as positive medium
(PM) or negative medium (NM). However, categorization of
linguistic variables leads to some uncertainties, as fuzzy sets
mean different things to different people. Fuzzy MF approxi-
mation of the confidences solves the problem of uncertainty
by converting linguistic variables into precise numeric forms.
There are many shapes of MFs as reported in the litera-
ture'®"". In this paper triangular MFs for both condition and
action variables are considered. The measured plant variables
are mapped into computational universes of discourses
(UoDs) by scale factors, Kg, Kcg and Kpy, for computational
simplicity'?. The motivation of this work is to,

i) determine the effectiveness of the use of GA search

strategy in designing FLC;
ii) select MF parameters optimally for better controller
performance.

Iterative procedure for selection of MF is a very much time
consuming task’, because for the change in MF parameters,
ie, for different shapes of the memebership functions the
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performance of FLC changes. Use of numerical techniques as
a design tool require a lot of derivative information. Particu-
larly, it is very difficult to produce derivative information for
different fuzzy rules and membership function definitions in
aFLC.

This work exploits GA search strategy to select MF optimally.
GA requires only information concerning the quality of solu-
tion, produced by each,set of parameters in the search process.
GA scarch is basically a computer simulated evolution, which
is used to alter the MFs of conventional FLC from one
generation to next one, while optimizing integral time square
error (ITSE). Here, ITSE is treated as a fitness function to link
the optimization problem with GA. This GA based FLC
(GA-FLC) is used to regulate the water level in a tank around
a desired set point by controlling the position of a stepper
motor operated controlled valve. The changing process dy-
namics are introduced by altering the set poiht for water level.

PROCESS DESCRIPTION

Fig 1 gives the schematics of the pilot plant considered for this
work. A capacitance type level sensor is submerged down to
the bottom of the tank. Water is being circulated through a
centrifugal pump kept at constant speed. Water flow in the
pipe is controlled by a stepper motor driven needle valve and
manual valves. Needle valves are coupled with a separate
stepper motor which is controlled by a stepper controller card.
The level sensor and stepper motor are interfaced with an IBM
compatible PC/XT. There is a bypass outlet between exit of
the pump and needle valve position. Delay coil is an extra
arrangement for introducing additional transportation lag in
the system. Needle valve is the actuator for the level control
system. The transfer function model of this process has been
derived using two point method'*",

LY _ Kt
CO =06 = 1+ b

where G (s), open loop transfer function of the tank; Y (s5), the
open loop step response of water level in the tank, in cm; U
(s5), the number of steps of stepper motor; Kp, Process gain =
4.2; tg, time delay = 20 s; and T, time constant = 210 s.
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FIGURE 1
SCHEMATIC DIAGRAM OF PILOT PLANT

FIGURE 2
WORKING OF A GENETIC ALGCRITHM
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GA is a computational model of simulated evolution used for
optimization. The main idea behind GA 15 to start with an
initial population of solutions and then attempt is made to get
improvements in subsequent generations, manifesting the sur-
vival of the fittest mechanism. This survival of fittest.or
natural selection mechanism is used to simulate evolution of
GA scarch to take place in a population of M numbers of
chromosomes, each of length /. Fig 2 shows how a GA works
through a simple cycle comprising of following four stages,

i) initialization of population,

i) evaluation of individual's fitness in a population,
iii) selection of best population members, and

iv) genetic manipu]alioﬁ.

To initiate the simulated evolution, the solutions 1o the prob-
lem are enccded on chromosomes. The parameter set in this
study consists of entire set of anchor points, that locate the
triangles defining the fuzzy sets N, Z, and P. The coding
technique adopted in this study is concatenaicd unsigned
integer coding of anchor points to take care of multiple pa-
rameter coding''. GA is used ecither to expand or shrink the
base widths of fuzzy triangles N, Z and P. The extreme fuzzy
sets N anc P require the definition of only one anchor point,
since one set of triangles is fixed at the limiting values of the
variables. Two anchor points are required to describe interior
triangle, defining fuzzy set Z. GA-Fi.C design for this process
requires the selection of 9 parameters. The FL.C is designed
with 3 term sets N (negative), Z (zero) and P (positive). The
fuzzy triangles for N,Z and P sets, used for both process input
and output variables are shown in Fig 3. The parameters of the
GA scarch space are the anchor points Lij, Cjj and R left,
center and right points of the base of triangles ¥, Z and P. Let
the universes of discoursgs for error e, change in error ce and
change in control action du are E, CE and DU, respectively.
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The uni' wises are discretized into certain number of segments
or quantization levels. In Fig 3, a common UoD is taken to
represent UoDs E, CE and DU, and the variable x represents
e, ce or du. Here the membership function of x takes different
values for different fuzzy sets (i = 1,... 3 for three fuzzy sets
N, Z and P) and quantization levels (j = 1, ..., 49). Each
chromosome, ie, one set of nine anchor points is decoded'? to
give membership functions according to a particular input
Xij using equation (2).

u (Xij) 1 "Mf—ij(cff_x'f)’ if Lij< Xij< Cjj (2)

=0 . if Xij< Lij or Xij< Rjj
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wherei =1, ... ., 3, for three fuzzy sets, j=1,...., 49, for
quantization levels of a variable and Xjj, a FLC condition or
action variable of ith fuzzy set and jth quantization interval;
My;; slope of MF to the left of the center point; and M, slope

of MF 1o the right of the centre point.

A simple GA uses three operators such as reproduction,
crossover and mutation for its search process. These operators
are implemented by generating random number, copying or
exchanging some portion of strings or chromosome, and
altering a particular integer of a string. The population of
chromosomes is of fixed size of length L.

Population Pool

A single run of GA starts with randomly generating an initial
population P (g0), ie, at g = g0, with chromosomes. Each
chromosome represents a possible solution to the problem, ie,
one set of fuzzy MFs. P (g1) is the population at generation
g =gl. The main loop of GA consists of generating a new
population P (g1), applying the three GA operators to the
existing population. The reproduction operator selects indi-
viduls for P (g1) from P (g0), according to each individual's

fitness in P (g0). The members with better fitness values may |

receive one or more number of copies in P (g0). The ..cmbers
with minimum fitness receive less, even no copies of them-
selves. These MFs are used for both fuzzification and defuzz-
ification. For each-simulated run of the controlled simulated
plant a fitness value is computed. Selection of new strings for
next generation is made according to string’s fitness. Genetic
manipulation is carried out on these newly reproduced strings
by crossover and mutation probabilistic approach, with a view
to obtain efficient MFs in next generation. The new strings are
again decoded, evaluated and MFs are computed, and this
cycle continues till a desired solution is achieved or the
simulation length is reached.

‘Reproduction

Reproduction operator is implemented through an algorithm,
Several methods are reported in literature'' to select best
strings for next generation. This paper uses the tournament
selection method in which astring is picked up atrandom from

the population pool. The fitness value of this string is com-

pared with that of the adjacent string. The string wtth best
(minimum ITSE) fitness value is selected.

Crossover

After selection, the strigns are stored in a mating pool, where
the crossover and mutation operators are applied i.. .. prob-
,abilistic way. The crossover operator provides a mechanism
for strings to exchange information through probabilistic de-
cision, It first picks up two newly selected strings from the
mating pool, produced by reproduction, and determines
whether crossover is to be applicd or not, from the outcome
of a tossed biased coin with biasing Pcross. crossover prob-
ability. Then a position along the two strings is selected
uniformly at random. Finally in the process of crossover the
information following the crossing site are exchanged.

Mutation

Though reproduction and crossover do a lot for searching an
optimal solution, mutation cnhances the GA’s ability in locat-

us

FIGURE 4
STRUCTURE OF GA-FLC

ITER
prsLaCh CAWIR A0
PORLAT IR R R WP
OAD PORAATION PO
FRLATION
P
. G
10T+ . .
E s f b‘
L]
: e | - SIAATD| 0
-
1 WO Flir LV
2 xS : &
= o [ ] W,. - -
E
. fgn o
R
u “ £l

ing near optimal solution. Mutation has been implemented by
replacing the value of a random integer position by a random
number, if at all the mutation probability Pmur satisfies,

GA—FLC Design

Fig 4 shows the structure of a GA-FLC. Scale parameters such
as KgKce and Kpy are used to transform the values of e, ce
and du in actual U,Ds to respective computational U,Ds for
simplified calculation. To accommodate the variables e, ce
and du in one UpD with 49 quantization levels, appropriate
values of Kg Kee and Kpy are selected. In the initial prototype
FLC design the MFs for linguistic variables N, Z and P are
selected heuristically as shown in Fig 3. Fuzzifier receives the
error and change in error at each sampling instant, and fuzzi-
fies them using MFs as selected by GA.

Fuzzy Reasoning

The fuzzy control rule base consists of a set of statements,
relating input variables and the corresponding output vari-
ables, to control the process. These statements are in the form
of production rules, and let the ith rule is R; which can be
expressed as,

Ri : If error () is E; and change in error (ce) is 'CE,' then
change in control action (du)'is DU; 3)

where E;, CEi and DU; are the fuzzy sets for e, ce and du,
respectively.

Rican be expressed as a fuzzy implication given by,
Ri: Ei— CE; — DU; (CH)

Let the universes of disccurses for error, change in error and
change in control are E, CE and DU, respectively.

Ri can be expressed as a fuzzy relation on E, CE and DU
spaces, and is given by the cartesian product,

Ri = £ x CE; x DU (5Y
The MF of Ri. ie, Hg; is defined as,
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FIGURE 5
FUZZY CONTROL RULE BASE
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Hr; = min (g (€), pcx; (ce), Loy, (du)) (6)

Using compositional rule of inference'*'® for fuzzy reasoning,
the consequence of each rule for measured values E’ and
CE’ is inferred by the formula'®
DU'; = (E'x CE") o R; O]
0 is composition operator.
The fuzzy control algorithm contains ‘r’ numbers of fuzzy
rules. Therefore, the overall relation matrix R, can be obtained
OR-ing the individual rules, and has been given in equation
(®).
R=RURUR,
UR; = U (Eix CE;x DUj) (8)

Wherei =1,..., r

Hence from equations (6) and (8) it can be noted that R can be
represented as a matrix of membership functions. Therefore,
the fuzzy rule base has been stored in a two dimensional array
as shown in Fig 5. Consequent DU’; for ith rule R; can be
accessed using the row index j for error and column index |
for change in error of the rule base matrix. Hence, rule R;,
consequent DU";, error Ej, and change in error CE; can be
redenoted as R;;, DUj, Ej and CE| respectively. Hence equa-
tion (7) can be rewritten as,

DU, = (E'ijE';)ojo--)CE;—)DUJ;: 9)

1]

where Rj,  is redenoted as, Re; — CEl — DU,

If sup-min operation is used for composition, the expression

reduces as,

Sup — min
e, ce

uDUj. ! (du) = (min u'.E ’ (8x), u’C:E' (Ce'k)),
Hej, (e, ce, du) (10)

In the implementations of FLC, as the measured values ek and
ceg at kth sampling instant are known exactly, and are used to

derive DUji for each fuzzy control rule. Hence the measured

values E” and CE’ are represented as nonfuzzy subsets, in
which all elements have the membership. value zero except at
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element ex and cei, where the measurements occurred. Under
such conditions equation 9 reduces to the following equa-
tion.'®
Hpu'j,; (du) = min [min {pg; (ex), HeE, (cen),
' Hou'j, , (du)] (11)
The consequent for the complete set of rules is given by
Hpuj , = max (kpu I ) (12)

The crisp control action for use in simulated plant is computed
using center of area method as in equation (13).

n
2 Hou’ (dui) du;j.
duy ===

Y. uou’ (dui)

i=1

(13)

Where n is number of quantization levels.

The simulation model is obtained after discretizing equation
(1) into the form,

YK =doxyk—1D+coxuk—s)+c,xuk-s-1)(14)

where y (k) and u (k) are process output and control input at
kth sampling instant, and do, co and c, are constants, depend-
ing on the sampling time, process gain and time delay, and s
is the maximum possible integer period of sampling interval
mn 4.

SIMULATION RESULTS

As discussed in introduction, FLC performs better than PID
in most of the systems. Hence the performance of GA-FLC
using the best of the different generation membership func-
tions is compared with that of the traditional FLC and is shown
in Fig 6, for the values of Kg = 12, Kcg =50, Kpy =001,
and set point = 30cm. It is clear that GA-FLC performs better
than FLC. Hence it is needless to compare its performance
with PID.

Population size variation trials showed that populations
greater than six and less than twelve were most effective.
Smaller populations maintained less variations that converge
prematurely. Selection of larger population size increases
processing overhead without corresponding improvement in
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FIGURE 7
RESPONSES OF FLC AND GA — FLC FOR FORTY
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Fig 7 gives the responses of FLC and GA-FLC for 49 quanti-
zation levels, for Kg = 14, Kcg = 21 and Kpy = 0.01. It can be
observed from Fig 6 and Fig 7 that even if the values of K,
Kce and Kpy are changed from 12, 50 and 0,01 to 14, 21 and
0.01, respectively, there are no appreciable changes in con-
troller performances.

CONCLUSIONS

The approach presented in this paper is based on Darwinian
evolution which rests on the idea of survival of the fittest or
natural selection to produce a set of optimal MFs through
repeated simulation. The implication of the results are sum-
marized as. (a) the proposed approach significantly reduces
the time and effort to find appropriate values for a large
number of MFs (b) the proposed approach gives a clear
understanding of the effect of MFs on the controller perform-
ance, and effect of plant parameler variations in terms of MFs.

Since a GA does not require any specific information, it is
more flexible than any other numerical optimization tech-
nique. Furthermore, extension of this GA optimization tech-
nique 1o design or evaluation of rule base is currently under
study. Also the authors are interested to develop hybrid sys-
tems of GA with neural networks for process control applica-
tions. The proposed GA- FLC may be used for water level
control in hydro as well as thermal power plants. GA-FLC is
a good candidate for efficient control of flow, temperature and
level of a liquid in industrial control applications.
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APPENDIX
ALGORITHM FOR GA-FLC
Begin

generationg =0

initialize p(g)

evaluate FLC performances (ITSEs) in Pg) for cach chromuosome while

(non ermination-condition)

begin

g=g+l

select p(g) fromp(g - 1)

recombine p(g)

evaluate p(g)

end

end.
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