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Abstract 

In this paper we propose a test statistic for testing exponentiality versus L-class of life distri- 
butions. This test is based on an estimate of a functional of the cdf which discriminates between 
the exponential and L-family. @ 1997 Elsevier Science B.V. 
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1. Introduction and summary 

We assume that F is an absolutely continuous life distribution with F ( 0 ) =  0, has 

a finite mean /l and denote the survival function (SF) by ff ( :  1 - F) .  Let D denote 

the set o f  all such life distributions. 

Klefsj6 (1983) has defined and extensively studied the L-class o f  life distributions. 

A distribution function F E D is said to belong to the L-class if for s/> 0, 

~0 °° (1.1) e x p ( - s t ) P ( t ) d t  >~ p(1 + slt)  -1 . 

The right-hand side o f  ( 1.1 ) may be seen to be the Laplace transform of  an exponential 

distribution with mean #. It is easy to show that the L-class is strictly larger than the 

harmonically new better than used in expectation (HNBUE) class of  life distributions. 

Hence, the L-class also contains the smaller NBUE, NBU, IFRA and IFR classes of  

life distributions. 

An excellent survey of  the tests of  exponentiality versus the various life distribu- 

tions belonging to IFR, IFRA, NBU, NBUE-classes is given in Hollander and Proschan 

(1984). The same problem for HNBUE-class was considered by Klefsj6 (1983). For 

testing exponentiality against IDMRL distribution see Hawkins et al. (1992) and ref- 

erences therein. 
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Let E denote the class of exponential distributions. Then E C D and equality occurs 
in (1.1) for all s/> 0 if and only if F E E. Due to this "no-aging" property of F E E, it is 
of practical interest to know whether a given life distribution F is in E. Alternatively, 
one may ask if F E L. 

Therefore, in this paper, we consider the problem of testing H0: F E E  versus 
Hi: F E L  based on a random sample )(1 . . . .  ,Xn, of size n, from F E D  (F unknown). 
Our test is based on an estimate of a functional which distinguishes F E E from F E L. 
This functional for F E D is given by 

~p(F) = sup{~b~(F): 0~<s~<F-l(1 - 0} ,  (1.2) 

where 1 >~ > 0  is a small fixed number, and, 

// O~(F) = e x p ( - s t ) F ( t ) d t  - ~(1 + s # )  -1. (1.3) 

The functional ~o(F) is clearly 0 for F E E  and strictly positive for F EL. 
Our test statistic is ~o(F~) where F~(.) is the empirical df. We show that this statis- 

tic has a limit distribution which coincides with the distribution of the supremum of 
certain Gaussian process. Using this limiting distribution, critical values are obtained. 
We compute power by Monte-Carlo method. 

The paper is organised as follows. In Section 2 the test statistic and its limiting null 
distribution are given. Section 3 contains the power computations. 

2. The test statistic and its limiting null distribution 

Let )(n denote the sample mean. Then our test statistic is 

Tn = n 1/2yn- l ¢p (Fn). (2 .1)  

Lemma 2.1. With definition (1.3), we have 

sup I I ~ s ( F ~ )  - ~ ' s ( F ) l l  = Op(n-1 /2 ) ,  (2.2) 
0~<s~F-I(I--~) 

where F~ is the empirical df  and F is assumed to be a life distribution having an 
absolutely continuous density. 

Proof. See the appendix. 

Hence, by the above lemma, ~p(F~) is near zero under H0 and large positive under 
H~, making large values of T~ significant for testing H0 versus H~. 

The following computational formula is derived easily, where XO)< . . .  < X(n) de- 
note the order statistics (X(o)= 0): 

Tn =n l /2 ) (n - I  m a x  1 -  a q -  
l<~j<~m i=1 1 ÷(j/m)FL--l(1 - e )Xn  
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where 

m = [n(1 - e)], 

and 

e x p ( - (  j /m  ) F -  l (1 -- e )X(i) ) - e x p ( - ( j / m  ) F -  l (1 - e)A~i+l)) 
aij = ( j /m  ) F -  l (1 - e) 

The asymptotic null distribution of Tn is given in Theorem 2.1. In this direction, let 
1 P 

Z~(p )=J0  (1 -u )PU- lW°(u )du  for some # > 0 ,  (2.4) 

where W ° is a Brownian bridge. Then {Z~(p), 0~< p~< 1 - e }  is a zero-mean Gaussian 
process with covariance function K ( p , q )  given by 

K - ~ ( p , q ) = ( p # +  1)(q# + 1 ) ( p p + q #  + 1). (2.5) 

Theorem 2.1. Under H0: F E E, 

T~ ~ Z~--sup{Z~,(p): 0~<p~<l - e } .  

Proof. See the appendix. 

Approximate asymptotic critical values of the test statistic T~ based on Z~ can be 
obtained via the following theorem. 

Theorem 2.2. For the Gaussian process {Z~(p): 0~<p~< 1 - ~} defined in (2.4), 

P (  sup Z ~ ( p ) > c  <,2P > K 1 / 2 ( l _ e , l _ e  ) , (2.6) 
\0~p~< 1-~ 

where X is N(0, 1 ), 

K - l ( 1 - ~ , l - ~ ) = [ p ( 1 - e ) + l ] 2 [ ( 1 - e ) # + l ]  and 0 < ~ < 1 .  

Proof. See the appendix. 

Table 1 contains selected quantiles of the distribution of Z~, computed from the 
bound in (2.6). 

A comparison of the bound in (2.6) with the exact value is given in Table 3. 

3. Power computation 

Table 2 contains Monte-Carlo power computations based on 1O00 replications of 
samples of size n - -50  from G(t), where 

G ( t ) - - 1 - t e x p ( 1 - ~ ) , #  0~<t~<#, (3.1) 
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Table 1 
Approximate quantiles of Z~ (e=0.10 and # =  1) 

c~ 0.90 0.95 0.99 

Z~ quantile 0.5189 0.6164 0.8114 

Table 2 
Power of the proposed test 

Size 0,01 0.05 0.10 
# 

1 0.0430 0.0512 0.0758 
5 0,2061 0.2105 0.2237 

10 0.2397 0.2409 0.2816 
20 0.4012 0.4653 0.4980 
50 0.5574 0.5601 0.5645 

100 0.6100 0.6205 0.6291 

Table 3 
A comparison of the bound in (2.6) with the exact 
value 

Bound Exact 

0.10 0.07 
0.05 0.03 
0.01 0.008 

see Chaudhuri  and Deshpande  (1996).  It is known  that G( t )  is a logconcave  SF, which  

is a lower  bound  o f  a SF be long ing  to the L-class.  Note  that the power  increases as /~ 

increases,  as expected.  
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Appendix 

Proof of L e m m a  2.1. W e  have,  
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= exp( - s t ) (Fn( t )  - F ( t ) )  dt 

= - exp( -s t ) (F~( t )  - F ( t ) )  dt. 

Thus, 

sup n 1/2 I[~bn(F,) - ~s(f)tl ~< nl/ZllF.(t) - f(t)l l  dt 
0~<s~<F-I(1--e) 

fo I du 
= ]]W~(u)[l f ( f_l(u)  ). 

(By applying the transformation u = F ( t )  and writing W ~ ( u ) = n l / 2 ( F n ( F - l ( u ) ) -  u), 

d u = f ( F - l ( u ) ) d t .  Recall that F is assumed to have an absolutely continuous den- 
sity f ) .  

fo du ]]W°(u)ll f ( F _ l ( u ) )  <oo 

(see Billingsley, 1968). This implies, 

fo du Op(1). ]] Wn(u)]] f ( F _ l ( u )  ) 

This completes the proof of the lemma. [] 

Proof of Theorem 2.1. Consider the stochastic process 

Zn(p ,F )  = nl/2(ffs(Fn) - ~ks(F)) 

= - f o  ~ exp(-s(p)t)nl/2(F~(t) - F ( t ) )  dt, 

where s ( p ) = F - l ( p ) ,  0~<p-G<l -~ .  
Apply the transformation: 

u = F ( t )  

and define 

Wn = n l / Z ( F n ( F - l ( u ) )  - u), O<~u<~ 1. 

Since 

d F - l ( u ) =  g(1 - u) - l ,  
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we have, 

#-lZn(p,F)= - f01 (1 - u)p#-lWn(u)du. 

Note that ~s (F)=  0, for F being exponential with mean #. 
Hence, 

1 p 
nl/2~s(Fn)t~l-l "~ --JO ( l -  u)p#-I W°(u)du, 

since W~(u) ~ W°(u) in D[0, 1], where W°(u) is a Brownian bridge. [] 

Remark. The case when p = 0 can be treated separately. 

Proof of Theorem 2.2. Since {Z~(p), 0~<p~<l -e}  has a continuous sample path 
with probability one, we have an a.s. Karhumen-Loeve expansion for Z~(p). 

Z~(p) = ~ zj4~j(p), 
j=l 

where 

fO l --~ zj = Z~(p)~bj(p) dp 

and ~bj is an eigenfunction corresponding to the eigenvalue 2j such that 

j['o I K(p, q)4)j(P) dp = 2j4~j(q). 

Here zj's are independent N(0,2j), j = 1,. . . ,  oc. Consider 

l(~m)(p) = ~ zj•j(p). 
j=l 

Then 

P(\o~p~<,-~sup Z:~'n)(p)>c) <~ 2P(Z~m)(1 - ~) >c),  

since 

e(lm<axnZ(m) ( j ~ ' ~ )  ~c)~2e(z(gm)(p)~c) 

(see Ash and Gardner, 1975, p. 180) and as n--~ ~z, 

P( max Z(m)(J~-~)>c) \o<<.p<~l-~sup z}m)(p)>c), 

which is due to the continuity of the sample path of {Z~(p), 0<~p~<l-e} .  
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Now,  s ince  

Z~")(p) ~ Z~(p), u n i f o r m l y  in p as m ~ c~ 

(see  Adler ,  1990) ,  

sup z(m)(p) --~ sup Z~(p) as m --+ oc. 
O<~ p<~ l--e O<~ p<~ l--e 

Hence ,  

P(0~<p~<I-eSUp Z ~ ( p ) > c ) ~ 2 P ( Z ~ ( 1 - ~ ) > c ) .  

This  c o m p l e t e s  the  proof .  [ ]  
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