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Abstract

In this paper a new probability density function with both unbounded and bounded sup-

port is presented. The new distribution, called modified exponential-geometric distribution

arises from the exponential-geomeric distribution introduced by Adamidis and Loukas [1].

It presents a variety of shapes of density function and hazard rate function. The distribution

with scale-transformed bounded support is considered as an alternative to the classical beta

distribution and is shown to have an application in insurance. In particular, we suggest

a special class of distorted premium principle based on this distribution and we compare

it with the dual power premium principle. Moreover, the proposed distribution with un-

bounded support is used as a lifetime model and is considered as an attractive alternative

to some existing models in the reliability literature.

Keywords and Phrases Distortion function; Hazard rate function; Maximum likelihood es-

timation; Monte-Carlo simulation

1 Introduction

In insurance, a probability distribution with domain on (0, 1) can be used as a distortion

function to define a premium principle. This is why the classical beta distribution has a dom-

inant role in insurance to produce a class of beta-distorted premium principles. For detail see
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Section 2.6 in Denuit et al. [4]. Although many researchers have proposed probability distri-

butions with domain on (0,1), most of these distributions involved special functions in their

formulations except Kumaraswamy distribution (see Jones [9]) and hence was not probably

considered as a distortion function. A review of the distributions with domain on (0,1) can

be found in Nadarajah [13]. Recently, Gómez et al. [7] use the log-Lindley distribution as an

alternative to the beta distribution to produce a class of distorted premium principle.

The exponential-geomeric (EG) distribution with unbounded support has been presented

by Adamidis and Loukas [1] as a lifetime model with decreasing failure rate. It is one of the

earliest published papers on lifetime distributions of a system with random number of compo-

nents. Here the authors assumed lifetime of individual components to follow iid exponential

distribution, and model the number of components failed by zero-truncated geometric distri-

bution. While the EG distribution has been proven to be quite effective to model any lifetime

behaviour with decreasing hazard function, it fails to model lifetime with other forms of hazard

rates. Encouraged by the findings of Gómez et al. [7] in the context of distortion premium

principle, we take the work of Adamidis and Loukas [1] a step further in a new direction and

introduce a new probability distribution with both unbounded and bounded support. While

the new distribution with bounded support on (0,1) is used as a distortion function, the same

with unbounded support has competitive features for lifetime modeling. This distribution,

namely modified exponential-geomeric (MEG) distribution is derived from the EG distribution

as mentioned earlier with the probability density function (PDF) given by

fEG(x;β, p) = β(1− p)e−βx(1− pe−βx)−2; x > 0, β > 0, 0 < p < 1.

The proposed MEG distribution exhibits varying shapes of density function including U shape,

with increasing, decreasing and bath-tub failure rates. The bounded support of the MEG

distribution is further transformed into (0, 1) support to have another distribution namely

beta-equivalent modified exponential-geomeric (MEGB) distribution which is shown to have

application in insurance.

The rest of the paper is organized as follows. In Section 2, the MEG distribution is

derived from the EG distribution. The shapes and the hazard rates of the distribution are

derived and discussed in detail along with moments, percentiles and coefficients of variation

(CV). Parameters of the distribution are estimated by the maximum likelihood method through

a simulation study. A real life example from reliability is provided with a detailed comparison

with some other competitive distributions. In Section 3, the MEGb distribution is introduced

with scale-transformed bounded support (0, 1). One application in insurance is shown in detail.

It is shown that the MEGB distribution induces a principle whose premium exceeds the net

premium (or expected risk) and sometimes is, for appropriate choice of the parameters, less

than the dual power premium principle (Wang [17]). Finally, Section 4 concludes. For any

function g, by g′(u) we mean the first derivative of g with respect to u.
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2 The MEG distribution

The EG distribution with parameters β > 0 and 0 < p < 1, as proposed by Adamidis and

Loukas [1] has the following cumulative distribution function (CDF):

FEG(x | β, p) = (1− e−βx)(1− pe−βx)−1; x > 0, β > 0, 0 < p < 1. (2.1)

Introducing θ ∈ < = (−∞,∞) as the third parameter and using simple algebra in (2.1), CDF

of the MEG distribution is obtained as

F (x; θ, β, p) =


(

1− (1− θβx)1/θ
)(

1− p (1− θβx)1/θ
)−1

if θ 6= 0

(1− e−βx)(1− pe−βx)−1 if θ = 0.
(2.2)

The support of the random variable (rv) X of the MEG distribution in (2.2) is (0,∞) when

θ ≤ 0, and
(

0, 1
θβ

)
when θ > 0. The PDF of the MEG distribution with parameters θ, β, p,

denoted by MEG(θ, β, p) is given by

f(x; θ, β, p) =

β(1− p) (1− θβx)(1/θ)−1
(

1− p (1− θβx)1/θ
)−2

if θ 6= 0

β(1− p)e−βx(1− pe−βx)−2 if θ = 0.
(2.3)

Remark 2.1 The EG distribution is a limiting special case of the MEG distribution when

θ → 0. 2

Remark 2.2 The Exponential distribution is a limiting special case of the MEG distribution

when θ → 0 and p→ 0+. 2

2.1 Statistical and reliability properties

Different properties of the MEG distribution are studied in this section. To be specific, we

study the behaviour of the density function and the hazard rate function in detail. Moments of

the distribution are also derived with some findings on the skewness and the kurtosis. Bowley’s

measure of skewness (Sk) is also computed with CV . Moreover, expressions of reversed hazard

rate function and mean residual function are also derived.

The following theorem shows that the three-parameter MEG distribution as give in (2.3)

takes various shapes for different choices of θ and p. Figure 1 shows the different shapes of

the density functions for different choices of the parameters. Below we write f(x) to mean

f(x; θ, β, p).

Theorem 2.1 The PDF of MEG(θ, β, p) distribution

(i) is strictly decreasing when −1 < θ < 0 and p ∈ (0, 1);

(ii) does not exist when θ ≤ −1 and p ∈ (0, 1);
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Figure 1: PDF of MEG distribution

(iii) is strictly decreasing when 0 < θ < 1 and p ∈ (0, 1);

(iv) is strictly increasing when θ > 1 and p ≤ θ−1
θ+1 , and U-shaped for θ > 1 and p ≥ θ−1

θ+1 .

Proof. Assuming u = (1− θβx)1/θ, the first expression of (2.3) can be written as

f(x)

β(1− p)
= u1−θ(1− pu)−2 = a(u), say.

Now, differentiating a(u) with respect to u, we get

a′(u) = u−θ(1− pu)−2
(
1− θ + 2up(1− pu)−1

)
,

which gives

a′(u) R 0 if and only if u R
θ − 1

p(1 + θ)
(2.4)

Case I: −1 < θ < 0. Then u > 0 and θ−1
p(1+θ) < 0. Thus, from (2.4) we see that a′(u) < 0 is not

possible. This gives that a′(u) ≥ 0 if and only if u ≥ θ−1
p(1+θ) (< 0), i.e., if u ≥ 0. So, a(u)

is increasing in u or f(x) is decreasing in x, for all x. Therefore, the PDF of the MEG

distribution is decreasing for −1 < θ < 0, for all p ∈ (0, 1).

Case II: θ < −1.

Here, u > 0 and θ−1
p(1+θ) > 0. Now,

u R
θ − 1

p(1 + θ)
if and only if x Q

1

αβ

[(
p(α− 1)

α+ 1

)α
− 1

]
,

where θ = −α;α > 1. But
(
p(α−1)
α+1

)α
− 1 < 0. Hence, a′(u) > 0 is not possible.

Therefore, a′(u) < 0 if and only if u < θ−1
p(1+θ) (> 0). So, a(u) is decreasing in u or f(x)

is increasing in x, for all x > 0. But, PDF cannot be increasing in an infinite support.

Hence, θ < −1 does not make (2.3) a proper PDF.
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Case III: 0 < θ < 1. Note that θ > 0 gives 0 ≤ x ≤ 1
θβ which in turn implies u ≥ 0 and θ−1

p(θ+1) < 0.

Hence, a′(u) > 0 for u > 0 implying that a(u) is increasing in u or f(x) is decreasing in

x. Therefore MEG distribution is strictly decreasing for 0 < θ < 1 and for all p ∈ (0, 1).

Case IV : Let θ > 1. From (2.4), we have that a(u) is increasing in u if and only if u ≥ θ−1
p(1+θ) . Now,

u ≥ θ − 1

p(1 + θ)
if and only if x ≤ 1

θβ

[
1−

(
θ − 1

p(θ + 1)

)θ]
= x0, say.

Again, [
1−

(
θ − 1

p(θ + 1)

)θ]
> 0, if and only if p ≥ θ − 1

θ + 1
.

Hence, a(u) is increasing in u, or, equivalently,

f(x) is decreasing in x, for p ≥ θ − 1

θ + 1
, and 0 ≤ x ≤ x0. (2.5)

Similarly, a(u) is decreasing in u if

1

θβ

[
1−

(
θ − 1

p(θ + 1)

)θ]
≤ x ≤ 1

θβ
.

Now, 1− ( θ−1
p(θ+1))

θ R 0 when p R θ−1
θ+1 . Therefore, for p ≥ θ−1

θ+1 ,

f(x) is increasing in x ≥ x0 (2.6)

and, for p ≤ θ−1
θ+1 ,

f(x) is increasing in x ≥ 0 (2.7)

Combining (2.5) and (2.6), we conclude that f(x) takes U-shape when θ > 1 and p ≥ θ−1
θ+1 .

Moreover, (2.7) confirms that f(x) is increasing when θ > 1 and p ≤ θ−1
θ+1 . 2

Remark 2.3 From (2.2), it is easy to derive that the ξth(ξ ∈ [0, 1]) order quantile, say xξ, of

the MEG distribution can be obtained by solving F (xξ; θ, β, p) = ξ, which gives the ξth order

quantile of MEG distribution as

xξ =


1
θβ

[
1−

(
1−ξ
1−pξ

)θ]
if θ 6= 0

− 1
β log

(
1−ξ
1−pξ

)
if θ = 0.

(2.8)

Median and other percentiles of the MEG distribution can be obtained from (2.8). 2

The rth order raw moment, µ′r, and hence the expectation and the variance of the MEG

distribution can be obtained from the following theorem.

Theorem 2.2 For θ > 0, E (1− θβX)r = 1−p
p

∑∞
i=1

ipi

rθ+i .
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Proof. Using the PDF in (2.3) of MEG distribution, we obtain

E(1− θβX)r = β(1− p)
∫
S

(1− θβx)r+
1
θ
−1
(

1− (p(1− θβx)1/θ
)−2

dx

=
1− p
p

∫ p

0
trθ(1− t)−2dt

=
1− p
prθ+1

∫ p

0

( ∞∑
i=1

iti−1

)
trθdt

=
1− p
prθ+1

∞∑
i=1

iprθ+i

rθ + i

=
1− p
p

∞∑
i=1

ipi

rθ + i
.

In the first equality, S is the support (based on whether θ ≤ 0 or θ > 0), whereas in the second

equality, the transformation t = p(1− θβx)1/θ is used. 2

Remark 2.4 In order for the rth moment of the MEG distribution to exist we must have

θ > −1
r . Hence, for the MEG distribution, all moments exist for θ > 0.

Corollary 2.1 Expectation and variance of the MEG distribution are as under.

µ =
1

θβ

1− 1− p
p

∞∑
j=1

jpj

θ + j


µ2 =

1

θ2β2

[
1− p
p

∞∑
i=1

ipi

2θ + i
+ 2θβµ− 1

]
− µ2.

Remark 2.5 The central moment (µr) can be easily derived from Theorem 2.2 and hence

moment measure of skewness (γ1 = µ3

µ
3/2
2

) and kurtosis (γ2 = µ4
µ22
− 3) along with CV . Table 1

shows values of moments, variance, γ1, γ2 and CV along with quartiles and Bowley’s measure

of skewness for a few choices of parameters of the MEG distribution. 2

Survival function of the MEG distribution is given by

F̄ (x; θ, β, p) =

(1− p) (1− θβx)1/θ
(

1− p (1− θβx)1/θ
)−1

if θ 6= 0

(1− p)e−βx(1− pe−βx)−1 if θ = 0,

with hazard rate

h(x) =

β (1− θβx)−1
(

1− p (1− θβx)1/θ
)−1

if θ 6= 0

β(1− pe−βx)−1 if θ = 0,
(2.9)

and reversed hazard rate

h̃(x) =

β(1− p) (1− θβx)
1
θ
−1
[(

1− (1− θβx)1/θ
)(

1− p (1− θβx)1/θ
)]−1

if θ 6= 0

β(1− p)e−βx
[(

1− e−βx
) (

1− pe−βx
)]−1

if θ = 0.
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Figure 2: Hazard rate of MEG distribution

The following theorem gives us a general result on hazard rate function of the MEG dis-

tribution. It shows that the distribution has decreasing, increasing and bathtub-shaped failure

rates. This fact has been depected through Figure 2 for different choices of the parameters.

Theorem 2.3 The hazard rate function of MEG(θ, β, p) distribution is

(i) strictly decreasing when −1 < θ < 0 and p ∈ (0, 1);

(ii) strictly increasing for θ > 0 and p ≤ θ
θ+1 , and bathtub-shaped for θ > 0 and p ≥ θ

θ+1 .

Proof. Assuming u = (1− θβx)1/θ as before, (2.9) can be written, for θ 6= 0, as[
h(x)

β

]−1
= uθ(1− pu) = b(u), say.

Then, b′(u) = uθ−1 (θ − pu(1 + θ)). Now,

b′(u) R 0 if and only if u Q
θ

p(1 + θ)
. (2.10)

Case I: −1 < θ < 0. Then u > 0 and θ
p(1+θ) < 0. Thus, from (2.10), we have that b′(u) > 0 is

not possible. This gives that b′(u) ≤ 0 if and only if u ≥ θ
p(1+θ)(< 0), i.e., if u ≥ 0. So,

b(u) is decreasing in u, or equivalently, h(x) is decreasing in x ≥ 0. Therefore, the MEG

distribution has decreasing failure rate for −1 < θ < 0, for all p ∈ (0, 1).

Case II: θ > 0. From (2.10), we have that b(u) is increasing in u if and only if u ≤ θ
p(1+θ) . Now,

u ≤ θ

p(1 + θ)
if and only if x0 =

1

θβ

[
1−

(
θ

p(θ + 1)

)θ]
≤ x ≤ 1

θβ
.

Again, 1 −
(

θ
p(θ+1)

)θ
R 0 if and only if p R θ

θ+1 . Hence, b(u) is increasing in u, or

equivalently,

h(x) is increasing in x, when p ≤ θ

θ + 1
. (2.11)
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Similarly, b(u) is increasing in u when 1− ( θ
p(θ+1))

θ ≥ 0, i.e., when p ≥ θ
θ+1 . Therefore,

h(x) is increasing in x, for p ≥ θ

θ + 1
, and x0 ≤ x ≤

1

θβ
. (2.12)

Again, b(u) is decreasing in u when u ≥ θ
p(θ+1) , i.e., when x ≤ x0. However, as we have

seen from the previous discussion, x0 ≥ 0 if p ≥ θ
θ+1 . Therefore,

h(x) is decreasing in x, for 0 ≤ x ≤ x0, when p ≥ θ

θ + 1
. (2.13)

Combining (2.12) and (2.13), we observe that the failure rate of MEG distribution is

bathtub-shaped when p ≥ θ
θ+1 . Also, (2.11) ensures that the distribution has increasing

failure rate when p ≤ θ
θ+1 . 2

Remark 2.6 Theorem 2.1 (ii) proves that the hazard rate function of the MEG distribution

does not exist for θ < −1. 2

Next, we derive the expression for mean residual life function (MRL) of the MEG distri-

bution. The proof is similar to that of Theorem 2.2.

Theorem 2.4 Mean residual function of the MEG distribution is given by

E (X − x0 | X ≥ x0) =
1− p
θF̄ (x0)

[
1− 1

βp

∞∑
i=1

ipi(1− θβx0)
i
θ
+1

θ + i
− θ(1− θβx0)

1
θ

]
.

2.2 Estimation of the parameters

Here, we consider estimation of the unknown parameters of the MEG distribution by the

method of maximum likelihood. Let x1, x2, ..., xn be a random sample of size n drawn from (2.3)

with parameters Ψ = (θ, β, p). Then the log-likelihood function L(Ψ) for MEG distribution

can be written as

L(Ψ) = n log β + n log(1− p) +

(
1

θ
− 1

) n∑
i=1

log (1− θβxi)− 2
n∑
i=1

log
(

1− p(1− θβxi)1/θ
)
.

(2.14)

The likelihood equations are given by

∂L

∂β
=
n

β
− (1− θ)

n∑
i=1

xi
Ai
− 2p

n∑
i=1

Cixi
Ai(1− pCi)

∂L

∂θ
= −1/θ2

n∑
i=1

Bi − β
(

1

θ
− 1

) n∑
i=1

xi
Ai

+
−2p

θ

n∑
i=1

[
Ci

1− pCi

(
Bi
θ

+
βxi
Ai

)]
∂L

∂p
=
−n

1− p
+ 2

n∑
i=1

Ci
1− pCi


(2.15)
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where Ai = 1− θβxi ; Bi = logAi ; Ci = A
1/θ
i . The maximum likelihood estimator (MLE) of

Ψ, say Ψ̂, is the simultaneous solutions of the likelihood equations (2.15) when θ < 0.

Estimation for the case of θ > 0 is somewhat different as the support of the distribution is

finite and depends on the unknown parameters θ and β. Let us propose a reparametrization of

β, θ, p as (α, θ, p) where α = 1/(θβ). Hence, (2.3) can be rewritten as

f(x; θ, α, p) =
1− p
θα

(
1− x

α

)(1/θ)−1(
1− p

(
1− x

α

)1/θ)−2
; 0 < x < α. (2.16)

Based on a random sample from (2.16), the MLE’s of (α, θ, p) are obtained by maximizing the

log-likelihood function

L1(α, θ, p) = n log(1− p)− n logα− n log θ+(
1

θ
− 1

) n∑
i=1

log
(

1−
x(i)

α

)
− 2

n∑
i=1

log

(
1− p

(
1−

x(i)

α

)1/θ)
.

(2.17)

Here, x(i) denotes the ith ordered observation. It is obvious from (2.17) that, for 0 < p < 1, as

α ↓ x(n) (the largest observation among xi, i = 1, 2, ..., n), L1(α, θ, p) → ∞ (resp. −∞) when

θ > 0 (resp. θ ∈ (0, 1)), resulting in the non-existence of MLE’s.

The most natural way (Smith [15]) to estimate the parameters to handle the situation is

to estimate α first by its consistent estimator α̂ = x(n). The modified log-likelihood function

based on the remaining (n − 1) observations after ignoring x(n) and substituting α as x(n) is

given as

L2(θ, p) = (n− 1) log(1− p)− (n− 1) log x(n) − (n− 1) log θ+(
1

θ
− 1

) n−1∑
i=1

log

(
1−

x(i)

x(n)

)
− 2

n−1∑
i=1

log

(
1− p

(
1−

x(i)

x(n)

)1/θ
)
.

(2.18)

Likelihood equations from (2.18) are derived as

∂L2

∂θ
= −(n− 1)/θ − 1/θ2

n−1∑
i=1

Ei − 2p/θ2
n−1∑
i=1

EiFi
1− pFi

∂L2

∂p
=
−(n− 1)

1− p
+ 2

n−1∑
i=1

Fi
1− pFi


(2.19)

where Di = 1 − x(i)
x(n)

; Ei = logDi ; Fi = D
1/θ
i . Since no closed form expressions for the

MLEs of Ψ are available from the expressions (2.15) and (2.19), we go for detailed simulation

studies to capture the means (µ) and the standard deviations (SD) of the MLEs of Ψ. Ten

thousand replicates of Monte-Carlo experiments of size 20, 50, 100 and 500 are considered in the

present investigation for each of the six sets of Ψ viz. (-0.5,0.5,0.5), (-5.0,0.5,0.5), (0.5,0.5,0.5),

(0.5,5.0,0.5), (5,0.5,0.5), (5.0,5.0,0.5). These estimates are obtained by using the function optim

from the statistical software R (version R.3.0.1). In the current context, we recommend to
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use quasi-Newton algorithms, namely the BFGS algorithm for numerical maximization of log-

likelihood functions. The results from simulated data sets are reported in Table 2. The results

show that the estimates are quite stable around the assumed values of Ψ and moreover, standard

errors of the MLEs decrease when sample size increases, which is expected.

2.3 An application of MEG distribution in reliability

Lifetime data modeling in the literature of reliability analysis is studied extensively by sev-

eral researchers for different life distributions which are mainly based on some modifications and

generalizations of exponential or Weibull distributions. While this modification is carried out

in some of the life distributions through exponentiation and its extension viz. Exponentiated or

Generalized Exponential (GE) distribution (e.g. Gupta and Kundu [8], Kundu and Gupta[10]),

Exponentiated Weibull (EW) distribution (e.g. Mudholkar and Srivastava [12]), there are others

where lifetime distributions are compounded with distribution of unknown number of compo-

nents yielding a new class of life distributions viz. Exponential-Geometric (EG) distribution

(Adamidis and Loukas [1]), Exponential-Poisson (EP) distribution (Kus [11]), Exponential-

Logarithmic (EL) distribution (Tahmasbi and Rezaei [16]), Weibull-Geometric (WG) distribu-

tion (Barreto-Souza et al. [2]) and so on.

In this section, we fit the MEG distribution to a real data set from Proschan [14]. The

data set consists of the number of successive failures for the air conditioning system of each

member in a fleet of 13 Boeing 720 jet airplanes. The pooled data with 214 observations were

first analyzed by Proschan [14] and discussed further by Dahiya and Gurland [3] and Gleser [6].

To carry out the comparison of the performance of our proposed model, we have considered

some alternative models as discussed in the earlier paragraph viz. EG, EP, EL and WG which

also fit the same data set from Proshan [14]. For the data set that we consider here, we derive

the maximum likelihood estimates, Kolmogorov-Smirnov (K-S) statistic and the corresponding

p-value for each of the distributions. The results of the data analysis are shown in Table 3.

Moreover, we have conducted chi-square goodness-of-fit test to the data set and compared ob-

served and expected frequencies for each of the distributions. These results are demonstrated

in Table 4.

The results from Table 3 show that the K-S test statistic and the p-value for the proposed

MEG model take the smallest and the largest values respectively for the data set as compared

to the other models, ensuring its applicability in practice. These results are further validated

by the comparison between observed and expected frequencies in Table 4, where expected fre-

quencies for the MEG model commensurate well with the observed frequencies, also showing

the highest p-value. In fact, the performance of all the models mentioned here along with the

proposed one are quite good in terms of K-S and p-value.

The Quantile-Quantile (Q-Q) plots are also shown in Figure 3. As the figures show, all the

models are very similar and provide good fits to the data set. The proposed model offers an
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Figure 3: Q-Q plots

attractive alternative to these well-established models not only to analyze the data set, but also

for its flexibility and potentiality with respect to shape and hazard rates.

3 Beta-equivalent MEG distribution

Here we transform the MEG distribution to a beta-equivalent distribution with support

(0, 1) for θ > 0, which is named as beta-equivalent MEG distribution and is denoted by MEGb.

If X follows the MEG distribution as given in (2.3), then U = Xθβ has the MEGb distribution

whose PDF is given by

fU (x | θ, p) =
1− p
θ

(1− x)
1
θ
−1
(

1− p (1− x)1/θ
)−2

; 0 < x < 1, θ > 0, 0 < p < 1, (3.1)

with CDF

FU (x | θ, p) =
(

1− (1− x)1/θ
)(

1− p (1− x)1/θ
)−1

. (3.2)

Remark 3.1 Being a two-parameter scale-transformed distribution, all the statistical and the

reliability properties of the MEGb distribution related to the shape of the pdf and the hazard

rate function remain same as the MEG distribution. 2

Remark 3.2 We intend to find out the type of Pearsonian system of curves the MEGb dis-

tribution belongs to. For this purpose, we have computed b0, b1 and b2, and hence κ =
b21

4b0b2

for different choices of the parameters and shown in Table 5. Details on Pearsonian system of

curves can be obtained in Elderton and Johnson [5]. The κ-criterion suggests that the distribu-

tion belongs to Pearson’s Type I system of curves where beta distribution also belongs to. 2

3.1 Use of MEGb distribution in insurance

Traditionally, an insurance risk X is defined as a non-negative loss random variable with CDF

GX and survival function (also known as decumulative distribution function in the actuarial lit-

erature) SX , and a premium calculation principle refers to a functional ρ : X → [0,∞). The pre-

mium principle ρ(X) gives the premium associated with the contract providing coverage against
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X. For an overview of premium principle, see Denuit et al. [4]. In general, for a risk X, the ex-

pected loss can be evaluated directly from its survival function as ρ∗1(X) = E(X) =
∫∞
0 SX(x)dx

and is commonly applied when decision-makers agree on the risk distribution. Note that ρ∗1(X)

is the simplest premium principle and is known as the net premium. As there does not exist

any unique risk distribution, insurers add a loading to X that reflects the danger associated

with the risk. Premium principle by Wang [17] suggests to transform the survival function by a

continuous and non-decreasing distortion function h : [0, 1]→ [0, 1] with h(0) = 0 and h(1) = 1.

The distortion function h(SX(.)) can be thought of as a risk-adjusted survival function of the

random variable Xh (say). A distortion risk measure associated with distortion function h, for

a random loss X, is given by ρh(X) = Eh(X) =
∫∞
0 h(SX(x))dx. The distortion risk measure

adjusts the true probability measure to give more weight to higher risk events. Both of the

quantile and the conditional tail expectation (CTE) risk measures fall into the class of distor-

tion risk measures. They are by far the most commonly used distortion measures for capital

adequacy, but others are also seen in practice, particularly for premium setting in property and

casualty insurance.

A concave distortion function gives more weight to higher risk events. For instance,

Wang [17] suggests to use ρh(X) as a premium principle; for insurance premium purpose,

ρh(X) must be at least equal to ρ∗1(X) and such is the case when h is concave. Moreover, as

h is increasing and concave, h(x) ≥ x for all x ∈ (0, 1) which ensures that h(S(x)) ≥ S(x) for

all x, or equivalently, X ≤st Xh, resulting in ρh(X) ≥ ρ∗1(X). It is to be mentioned here that,

for two random variables X and Y with respective survival functions F̄ and Ḡ, X is said to

be smaller that Y in usual stochastic order, written as X ≤st Y , if F̄ (x) ≤ Ḡ(x), for all x.

Hence, the premium principle contains a non-negative loading. In fact, the premium principle

with concave distortion function satisfies some desirable properties of premium functional viz.

non-ripoff, positive homogeneity, comonotonicity and subadditivity. These four axioms make

the concave distortion risk measure coherent; for more details, see Denuit et al. [4].

Here we use the CDF of the MEGb distribution to distort the survival function SX of any

loss random variable to offer a premium with non-negative loading. Next, we intend to find out

another risk-adjusted premium principle, known as dual power premium principle (Wang [17]).

It can be easily shown that the concave distortion function h(x) = 1−(1−x)1/θ
1−p(1−x)1/θ (See Theo-

rem 3.1) transforms the survival function SX(x) of loss random variable into the survival

function 1− [GX(x)]n which corresponds to the survival function of the random variable Xn:n,

the nth order statistic, where Xi, i = 1, 2, ..., n are iid random variables. So, the corresponding

risk-adjusted premium is ρ∗n(X) = E(Xn:n). It is obvious that ρ∗1(X) ≤ ρ∗n(X).

The distortion function, the CDF of the MEGb distribution in the present case, is said

to follow the dual power premium principle if ρh(X) ≤ ρ∗n(X) for some relationship between

the parameters of the distortion function, the risk distribution and the sample size n. The

results in Table 6 confirm that the premium obtained by distorting original loss distribu-

tion by the MEGb distribution lies between the net premium and the dual power premium
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(ρ∗1(X) ≤ ρh(X) ≤ ρ∗n(X)) for selected choices of the parameters. However, it is also observed

from Table 7 that the same distortion function does not satisfy the dual power premium prin-

ciple for some other choices of the parameters with the same sample size. We have considered

the exponential, the Weibull, the lognormal and the inverse Gaussian distributions as the orig-

inal loss distribution with different choices of the parameters. Hence, the upper bound of the

distorted premium principle with CDF of MEGb distribution as the distortion function may

not always be the dual premium principle. We conclude this section by showing that the CDF

of the MEGb distribution is concave.

Theorem 3.1 The CDF of the MEGb distribution (given in (3.2)) is concave for θ ≤ 1.

Proof. Differentiating (3.2) twice, we get

F ′′(x) = −
(

1− p
θ

)(
1− p (1− x)1/θ

)−3
(1− x)

1
θ
−2
[
p (1− x)1/θ

(
1

θ
+ 1

)
+

(
1

θ
− 1

)]
.

For x ∈ (0, 1), 0 < p < 1 and θ > 0, it is obvious that F ′′(x) is concave for 0 < θ ≤ 1. 2

4 Conclusion

In this paper a new PDF with both unbounded and bounded support is proposed, which

exhibits a variety of shapes of PDF and hazard functions. The new distribution, called modified

EG distribution is derived from the exponential-geomeric distribution, introduced by Adamidis

and Loukas [1]. The parameters of the proposed distribution is estimated using the maximum

likelihood method through Monte-Carlo simulation. The distribution with scale-transformed

bounded support on (0, 1), known as beta-equivalent MEG distribution is shown to belong

to Pearsonian Type I system of curves and is suggested as a special class of distorted pre-

mium principle in the insurance context. The proposed distribution with unbounded support

is considered as a competitive lifetime model with respect to some well-established models.
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(θ, β, p) µ µ2 CV γ1 γ2 Q1 Q2 Q3 Sk

(-0.10,2,0.2) 0.493 0.338 1.179 3.014 16.900 0.120 0.303 0.651 0.311

(-0.10,2,0.6) 0.332 0.216 1.400 3.785 26.209 0.063 0.171 0.410 0.378

(-0.24,2,0.2) 0.578 0.709 1.456 6.743 513.567 0.122 0.316 0.711 0.341

(-0.24,2,0.6) 0.380 0.422 1.710 8.151 736.727 0.064 0.175 0.434 0.400

(0.4,0.5,0.2) 1.298 1.067 0.795 0.212 -0.076 0.451 1.048 1.935 0.195

(0.4,0.5,0.6) 0.935 0.827 0.973 1.393 1.570 0.244 0.630 1.352 0.303

(0.4,2.0,0.2) 0.325 0.067 0.795 0.881 0.063 0.113 0.262 0.484 0.197

(0.4,2.0,0.6) 0.234 0.052 0.972 1.393 1.570 0.061 0.157 0.338 0.307

(2.0,0.5,0.2) 0.629 0.093 0.486 -0.039 -1.487 0.377 0.691 0.913 -0.172

(2.0,0.5,0.6) 0.505 0.099 0.622 0.010 -1.110 0.221 0.490 0.793 0.059

(2.0,2.0,0.2) 0.157 0.006 0.486 -0.461 -1.084 0.094 0.173 0.228 -0.179

(2.0,2.0,0.6) 0.126 0.006 0.622 0.064 -1.317 0.055 0.122 0.198 0.063

Table 1: Moments and quartiles of the MEG distribution for some choices of (θ, β, p)
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(θ, β, p) n MLE SD

(-0.5,0.5,0.5) 20 0.55857 -0.55471 0.59873 0.0044687 0.0040145 0.0074738

50 0.54524 -0.57388 0.56295 0.0005057 0.0010094 0.0005307

100 0.52891 -0.54595 0.54339 0.0004016 0.0004605 0.0002835

500 0.49229 -0.52165 0.53313 0.0003393 0.0002993 0.0002079

(-5.0,0.5,0.5) 20 5.59075 -0.57812 0.57266 0.0446627 0.0045076 0.0163101

50 5.49697 -0.60776 0.55305 0.0032612 0.0023078 0.0006664

100 5.50101 -0.62647 0.51458 0.0026782 0.0016946 0.0004795

500 5.33426 -0.64013 0.48321 0.0020705 0.0008048 0.0001576

(0.5,0.5,0.5) 20 0.61561 0.58036 0.63011 0.0225243 0.0898215 0.0211134

50 0.58632 0.54686 0.60020 0.0086874 0.0436351 0.0056752

100 0.55655 0.51928 0.56231 0.0009265 0.0052417 0.0007985

500 0.51100 0.49685 0.52332 0.0005563 0.0007372 0.0002322

(0.5,5.0,0.5) 20 5.10213 0.65178 0.58390 0.0721342 0.0560551 0.0261122

50 5.03214 0.59113 0.56662 0.0083615 0.0053224 0.0063531

100 4.98201 0.49174 0.50888 0.0034747 0.0002398 0.0003215

500 4.91201 0.46961 0.51030 0.0002983 0.0001531 0.0001555

(5.0,0.5,0.5) 20 0.70077 5.01690 0.51395 0.0483501 0.0029333 0.0175577

50 0.61212 5.10325 0.52101 0.0232521 0.0012035 0.0096321

100 0.54331 5.00692 0.51115 0.0088524 0.0005664 0.0005036

500 0.51655 4.95983 0.50601 0.0008871 0.0003134 0.0002691

(5.0,5.0,0.5) 20 6.76976 5.16878 0.52539 0.4781179 0.0066869 0.0186187

50 5.01394 4.97019 0.59852 0.0024631 0.0012543 0.0005525

100 4.90802 4.94170 0.60559 0.0017124 0.0006001 0.0004561

500 4.99433 4.91830 0.61991 0.0006238 0.0003339 0.0001983

Table 2: MLEs and SD of parameters of MEG Distribution based on Monte Carlo Simulation

Distribution Estimates K-S p-value

MEG (-0.1003;0.0106;0.1936) 0.0416 0.8546

WG (0.0051;1.1843;0.7695) 0.0658 0.5021

EG (0.0082;0.4088) 0.0492 0.6302

EP (0.0079;1.2011) 0.0471 0.7623

EL (0.0086;0.4005) 0.0486 0.6734

Table 3: ML estimates, K-S statistics and p-values for the Proschan data
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Class Observed Expected frequency

Intervals frequency MEG WG EG EP EL

0-50 99 97.31 94.39 98.11 98.40 97.61

50-100 51 48.38 48.84 47.03 47.76 46.92

100-150 19 26.36 28.47 25.87 25.82 26.18

150-200 14 15.21 16.39 15.31 15.01 15.61

200-250 14 9.14 9.53 9.45 9.16 9.64

250-300 4 5.66 5.66 5.99 5.78 6.08

300-350 3 3.60 3.44 3.86 3.73 3.88

350-400 2 2.33 2.14 2.51 2.44 2.49

400-450 3 1.54 1.36 1.65 1.61 1.61

450-500 2 1.03 0.88 1.09 1.07 1.04

500-550 1 0.70 0.58 0.72 0.72 0.68

550-600 0 0.49 0.39 0.48 0.48 0.44

600- 1 1.24 0.91 0.94 0.99 0.82

p-value 0.6507 0.4685 0.6394 0.6292 0.6106

Table 4: Observed and expected frequencies of the Proschan data

θ ↓ p→ 0.1 0.3 0.5 0.7 0.9

0.1 -2.23 (1.6,3.1) -2.81 (1.8,4.0) -3.85 (2.1,5.5) -6.31 (2.6,8.8) -20.25 (4.0,22.8)

0.5 -0.16 (0.6,-0.5) -0.25 (0.8,-1.0) -0.43 (1.1,0.4) -0.85 (1.5,1.7) -2.83 (2.6,7.5)

0.9 -0.01 (0.2,-1.1) -0.04 (0.3,-0.2) -0.11 (0.6,-0.8) -0.31 (0.9,-0.1) -1.37 (1.9,3.5)

2.0 -0.09 (-0.5,-0.9) -0.04 (-0.4,-1.2) -0.02 (-0.1,-1.3) -0.02 (0.3,-1.2) -0.43 (1.2,0.3)

5.0 -0.48 (-1.3,0.4) -0.26 (-0.9,-0.4) -0.08 (-0.5,-1.1) -0.85 (1.5,1.7) -0.03 (0.4,-1.2)

Table 5: κ (γ1, γ2) values of the MEGb distribution for different choices of parameters (θ, p)
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Premium ρ∗1(X) ρh(X) ρ∗n(X)

Parameters of MEGb → θ = 0.2 θ = 0.4 θ = 0.6 θ = 0.8 n = 15 n = 25

p = 0.1 p = 0.5 p = 0.7 p = 0.9

Loss density ↓
Exponential

λ = 0.5 0.500 1.176 1.066 1.073 1.379 1.659 1.908

λ = 1.0 1.000 2.352 2.132 2.146 2.759 3.318 3.816

λ = 3.0 3.000 7.056 6.396 6.439 8.279 9.955 11.447

Weibull

λ = 0.5, γ = 0.5 1.000 3.524 3.112 3.221 4.959 6.296 8.084

λ = 1.0, γ = 1.5 0.903 1.719 1.591 1.589 1.896 2.192 2.414

λ = 2.0, γ = 2.5 1.774 2.729 2.576 2.876 2.876 3.180 3.375

λ = 2.5, γ = 3.0 2.232 3.229 3.084 3.069 3.368 3.674 3.863

lognormal

µ = 0.5, σ = 0.50 1.868 3.188 2.981 2.990 3.565 4.085 4.556

µ = 1.0, σ = 1.00 2.718 11.516 10.387 10.598 14.836 18.192 22.369

µ = 2.0, σ = 1.50 22.760 78.227 69.495 72.426 115.999 146.135 195.068

µ = 2.5, σ = 0.75 16.139 34.304 31.401 31.734 41.100 49.035 57.515

Inverse Gaussian

µ = 0.5, σ = 0.5 0.500 1.156 1.050 1.063 1.407 1.703 2.011

µ = 1.0, σ = 1.0 1.000 2.313 2.100 2.126 2.185 3.406 4.021

µ = 2.0, σ = 1.5 2.000 4.982 4.495 4.569 6.221 7.614 9.133

µ = 2.5, σ = 2.0 2.500 6.124 5.533 5.620 7.602 9.282 11.093

Table 6: ρ∗1(X), ρh(X) and ρ∗n(X) for different loss PDF’s with varying choices of parameters
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Premium ρ∗1(X) ρh(X) ρ∗n(X)

Parameters of MEGb → θ = 0.1 θ = 0.2 n = 15 n = 25

p = 0.8 p = 0.9

Loss density ↓
Exponential

λ = 0.5 0.500 2.007 2.038 1.659 1.908

λ = 1.0 1.000 4.154 4.076 3.318 3.816

λ = 3.0 3.000 12.462 12.229 9.955 11.447

Weibull

λ = 0.5, γ = 0.5 9.786 9.578 3.112 6.296 8.084

λ = 1.0, γ = 1.5 2.546 2.507 1.591 2.192 2.414

λ = 2.0, γ = 2.5 3.478 3.440 2.576 3.180 3.375

λ = 2.5, γ = 3.0 3.958 3.921 3.368 3.674 3.863

lognormal

µ = 0.5, σ = 0.50 1.868 4.900 4.829 4.085 4.556

µ = 1.0, σ = 1.00 2.718 26.387 25.886 18.192 22.369

µ = 2.0, σ = 1.50 241.679 236.984 69.495 146.135 195.068

µ = 2.5, σ = 0.75 16.139 64.662 63.517 49.035 57.515

Inverse Gaussian

µ = 0.5, σ = 0.5 0.500 2.248 2.205 1.703 2.011

µ = 1.0, σ = 1.0 1.000 4.496 4.410 3.406 4.021

µ = 2.0, σ = 1.5 2.000 10.345 10.139 7.614 9.133

µ = 2.5, σ = 2.0 2.500 12.528 12.280 9.282 11.093

Table 7: ρ∗1(X), ρh(X) and ρ∗n(X) for different loss PDF’s with varying choices of parameters
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