
1 
 

Distribution-free CUSUM Control Chart  

for Joint Monitoring of Location and Scale 

 

S. Chowdhury 

Indian Institute of Management 

Kozhikode; QM & OM Area; 

Kozhikode; Kerala,India. 

Email: shovanc@iimk.ac.in  

 

 

A. Mukherjee                                      

Indian Institute of Management 

Udaipur; OM, QM& IS Area, 

Udaipur, Rajasthan-313001, India. 

 

 

S.  Chakraborti 

Department of Information  Systems,  

Statistics and Management Science, 

University of AlabamaTuscaloosa, USA 

 

Abstract: Mukherjee and Chakraborti (2012) proposed a single distribution-free (nonparametric) 

Shewhart-type chart based on Lepage (1971) test statistic for simultaneously monitoring both the location 

and the scale parameters of a continuous distribution when both of these parameters are unknown. In the 

present work, we consider a single distribution-free CUSUM chart based on Lepage statistic, referred to 

as CUSUM-Lepage (CL) chart. Our proposed chart is nonparametric and therefore, in control (denoted 

IC) properties of the chart remain invariant and known for all continuous distributions. Control limits are 

tabulated for implementation in practice. The IC and out of control (denoted OOC) performance 

properties of the chart are investigated through simulation studies in terms of the average, the standard 

deviation, the median and some percentiles of the run length distribution. Detailed comparison with the 

Shewhart-type chart is presented. We also examine the effect of the reference value (k) of CUSUM chart 

on the performance of CL chart. The proposed chart is illustrated through a real data. Summary and 

conclusions are presented. 

Keywords: Ansari-Bradley Statistic; Average Run Length; Phase I and II; CUSUM Lepage Chart; 

Nonparametric; Monte-Carlo simulation; Statistical process control; Shewhart Lepage Chart; Wilcoxon 

Rank sum Statistic. 

 

1. INTRODUCTION 

Robustness of many of the available control charts for monitoring a process largely 

depends on the assumption of normality which is often difficult to justify in practice. In the 

recent times, a number of researchers have advocated using distribution-free (nonparametric) 

control charts, in particular when the process distribution is unknown, or known to be markedly 

different from normal or a heavy-tailed one. Nevertheless, most of the distribution-free 

control charts that are available in the literature are designed for monitoring either the process 
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location or the scale parameter separately. Using separate charts for different process parameters 

can cause practical problems with regard to implementation and interpretation. Thus a single 

chart (as opposed to two separate charts) for joint monitoring of location and scale parameters 

has been recommended as it may be simpler and may have some performance advantages (see 

for example, McCraken et al., 2013). To understand the importance and impact of joint 

monitoring, readers may see the review by Cheng and Thaga (2006) for coverage of literature 

until 2005 and the paper by McCracken and Chakraborti (2013) for more recent advances. 

The CUSUM charts were first introduced by Page (1954). Over the years, CUSUM charts 

have proven (see, for example, Hawkins (1987), Woodall (1983), Lucas (1985), Chang and Gan 

(1995)) to be useful in SPC and many other areas for monitoring processes over time. Various 

modifications and adaptations of CUSUM charts have also been proposed in the literature (see, 

for example, Reynolds et al. (1990), Gan (1993), Goel (2011) and Mukherjee et al. (2013)). The 

CUSUM chart is known to be superior to the Shewhart control chart in the sense that the 

CUSUM control charts tend to have smaller Average Run Lengths (ARL’s) particularly for small 

changes in the parameters. While a Shewhart chart is better in detecting an immediate abrupt 

(transient) change, the cumulative sum (CUSUM) chart is more effective in detecting more 

sustained changes. The reader is referred to Hawkins and Olwell (1998) and Gan (2007) for a 

detailed discussion on CUSUM control charting literature. 

While much work has been done and continues to be done in the parametric setting, it is 

now well recognized that the distribution-free (or nonparametric) charts are useful and expected 

to be superior when the model assumptions such as normality is difficult to validate. There has 

been a significant amount of work done in this area. While Park and Reynolds (1987) developed 

nonparametric procedures for monitoring location parameter of a continuous process based on 
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linear placement statistic, McDonald (1990) considered a CUSUM procedure for individual 

observations based on the sequential ranks statistic. Bakir and Reynolds (1979) and Amin et al 

(1995) proposed a non parametric CUSUM chart based on signed-rank and sign statistics, 

respectively. Run-length distribution of the CUSUM chart was discussed in detail by Jones et al. 

(2004). Li et al (2010) considered the Wilcoxon rank sum test to detect step mean shifts through 

CUSUM and EWMA charts. Recently, Yang and Cheng (2011) and Mukherjee et al. (2013) 

developed nonparametric CUSUM charts to detect the possible small shifts in process mean.  

Recently, Ross et al. (2011) discussed nonparametric monitoring of data streams for changes in 

location and scale and Ross and Adams (2012) considered two nonparametric control charts for 

detecting arbitrary distribution changes. For an overview of nonparametric control charts, see 

Chakraborti et al. (2001, 2007, 2011). 

For monitoring both the location and scale parameters in Phase II using a reference 

sample from Phase I, Mukherjee and Chakraborti (2012) considered a nonparametric Shewhart-

Lepage (SL) chart based on the Lepage (1971) statistic.  For the same problem, Chowdhury et al. 

(2013) considered a nonparametric Shewhart-Cucconi (SC) chart based on the Cucconi (1968) 

test statistic.  Encouraged by these findings, in this paper, we take the work a step further in a 

new direction and consider a nonparametric CUSUM chart based on the Lepage (1971) statistic. 

The proposed CUSUM-Lepage (CL) charts are expected to be more effective in detecting 

smaller, more sustained types of shifts. 

The rest of the paper is organized as follows. Section 2 provides a brief background of 

nonparametric control charting procedures for joint monitoring of location and scale parameters 

on the basis of the Lepage statistic, along with the statistical framework and preliminaries. The 

proposed CL control chart is introduced in Section 3. Section 4 is devoted to the derivation of the 
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run length distribution, determination of the upper control limit (UCL) and examining the IC 

performance of the chart. The OOC performance of the CL chart, along with a detailed 

comparison with the SL chart, is presented in Section 5 based on various run length distribution 

characteristics obtained via Monte-Carlo simulation. In Section 6, we study the effect of the key 

parameter of CUSUM chart, the so-called reference value, on the performance of the chart. The 

charting procedure is illustrated in Section 7 with a data set from Montgomery (2005).  We 

conclude with a summary in Section 8. 

2.  STATISTICAL FRAMEWORK AND PRELIMINARIES 

Simultaneous monitoring of location and scale parameters is useful in many applications. 

A nonparametric control chart is useful when assumptions related to the process distribution 

cannot be made. While most of the distribution-free control charts have been devoted to 

monitoring the location parameter only, Mukherjee and Chakraborti (2012) and Chowdhury et al. 

(2013) proposed nonparametric control charts to monitor both the location and scale parameters. 

The Lepage (1971) test is a combination of the Wilcoxon rank sum test (for location) and the 

Ansari-Bradley test (for scale), and is used to test for the equality of location and scale 

parameters in the nonparametric literature. Mukherjee and Chakraborti (2012) used the Lepage 

statistic in a Shewhart type control chart to monitor the location and the scale parameters. The 

same Lepage statistic is used here in a CUSUM chart and the resulting chart is called the 

CUSUM-Lepage (CL) chart. 

Let 𝑈1, 𝑈2,…,𝑈𝑚  and 𝑉1, 𝑉2, … , 𝑉𝑛  be the independent random samples from two 

populations with continuous distribution functions (cdf) 𝐹(𝑥) and 𝐺 𝑦 = 𝐹  
𝑥−𝜃

𝛿
 ;  𝜃 ∈

ℜ ;  𝛿 > 0 ; where 𝐹 is an unknown continuous cdf. The constants 𝜃 and 𝛿 represent the 
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unknown location and scale parameters, respectively. Introduce an indicator variable 𝐼𝑘 = 0 or 1 

as the k-th order statistic of the combined sample of 𝑁 (=  𝑚 +  𝑛) observations is a U or a V, 

respectively. Further, consider the Wilcoxon rank sum (WRS) statistic, say, 𝑇1 =  𝑘𝐼𝑘
𝑁
𝑘=1  used 

to test 𝜃 = 0. Similarly, consider the Ansari-Bradley (AB) test statistic, say, 𝑇2 =   𝑘 −𝑁
𝑘=1

𝑁+1

2
 𝐼𝑘 , which is a popular choice for testing 𝛿 = 1. It is known that the WRS and the AB 

statistics are mutually independent under IC and both the WRS and the AB tests are powerful for 

a class of distributions. Like, WRS test is most powerful when underlying population distribution 

is logistic. Interested readers may see Gibbons and Chakraborti (2010) for further details. 

In the process monitoring context, let the U’s denote the Phase I reference data and let the 

V’s denote the Phase II (test) data under monitoring. In Phase II, the process is said to be in 

control (𝐼𝐶) when  𝐹 = 𝐺, that is when 𝜃 = 0 and  𝛿 = 1. It is well known (see, Gibbons and 

Chakraborti (2010)) that 𝐸 𝑇1 𝐼𝐶 =  𝜇1 =  
1

2
𝑛 𝑁 + 1  and  𝑉𝑎𝑟 𝑇1 𝐼𝐶 =  𝜎1

2 =  
1

12
𝑚𝑛 𝑁 +

1 . Moreover, 

   𝐸 𝑇2 𝐼𝐶 =  𝜇2  =   

𝑛𝑁

4
                             𝑖𝑓    𝑁 𝑖𝑠 𝑒𝑣𝑒𝑛

𝑛 𝑁2 − 1 

4𝑁
                   𝑖𝑓  𝑁 𝑖𝑠 𝑜𝑑𝑑       

  

and 

𝑉𝑎𝑟 𝑇2 𝐼𝐶 =  𝜎2
2 =  

 
 

 
1

48
𝑚𝑛

 𝑁2 − 4 

𝑁 − 1
                                       𝑖𝑓   𝑁 𝑖𝑠 𝑒𝑣𝑒𝑛         

1

48

𝑚𝑛 𝑁 + 1  𝑁2 + 3 

𝑁2
                            𝑖𝑓  𝑁 𝑖𝑠 𝑜𝑑𝑑               
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Writing the standardized WRS and the AB statistics as 𝑆1 =  
𝑇1−𝜇1

𝜎1
  and  𝑆2 =  

𝑇2−𝜇2

𝜎2
 , 

repectively, we may define the Lepage test statistic as: 𝑆𝐿
2 = 𝑆1

2 + 𝑆2
2  . It is easy to see that 

𝐸 𝑆1|𝐼𝐶 = 𝐸 𝑆2|𝐼𝐶 = 0 and 𝐸 𝑆1
2|𝐼𝐶 = 𝐸 𝑆2

2|𝐼𝐶 = 1 and therefore, 𝐸 𝑆𝐿
2|𝐼𝐶 = 2 =  𝜇𝐿 , 

say. Note that, 𝑆𝐿
2 is non negative by definition. Also, it is easy to visualize that whenever 𝜃 

deviates from 0, irrespective of direction of the shift, the absolute value (ignoring sign) of 𝑆1 is 

expected to be larger on an average. Similarly, irrespective of the direction of the shift of 𝛿 from 

1, 𝑆2 is expected to be larger on an average. As a consequence, irrespective of the type and the 

direction of the shift, either in location or in scale or in both, 𝑆𝐿
2 is expected to take on larger 

values compared to 𝜇𝐿.  Hence, it is clear that one should only focus at detecting one sided 

(rightward) shift in the Lepage statistic to identify any shift(s) in location and/or scale 

parameters. Thus, in order to monitor small change(s) in location and/or scale parameter, we 

propose an upper one sided CUSUM chart based on the Lepage statistic.  

3. CONSTRUCTION OF CUSUM-LEPAGE (CL) CHART 

The upper one-sided CUSUM chart based on Lepage Statistic, referred to as the CL chart 

may be constructed as follows: 

Step 1. Collect a reference sample 𝑿𝒎  =  (𝑋1, 𝑋2, … , 𝑋𝑚 ) of size 𝑚 from an IC 

process. Establishing a reference sample is itself a challenging problem and there are several 

Phase I control charts available in the literature for this purpose. In this paper, emphasis is on 

evaluating the performance of the CL chart and we are assuming that an appropriate reference 

sample is available a-priori. 

Step 2.  Collect 𝒀𝒋,𝒏  =   𝑌𝑗1 , 𝑌𝑗2 , … , 𝑌𝑗𝑛  , the j-th Phase II (test) sample of size 𝑛, 𝑗 =  1, 2, … 
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Step 3. Identify the U's with the X's and the V's with the Y 's respectively. Calculate the WRS 

statistic 𝑇1𝑗  and the AB statistic 𝑇2𝑗  using the reference sample and the j-th test sample and 

obtain the standardized WRS and AB statistics 𝑆1𝑗  and 𝑆2𝑗 , respectively as described in Section 

2. Finally obtain the Lepage statistic 𝑆𝐿𝑗
2  for the j-th test sample. 

Step 4. Recall that 𝐸 𝑆𝐿
2|𝐼𝐶 = 2  and therefore the CL plotting statistic is given by: 

𝐶𝑗 = 𝑚𝑎𝑥 0 , 𝐶𝑗−1 +  𝑆𝐿𝑗
2 − 2 − 𝑘 ; 𝑗 = 1, 2, …,  for the j-th test sample with the starting value 

𝐶0 = 0. Here, 𝑘(≥ 0)  is called a reference value. 

Step 5. Plot 𝐶𝑗  against an upper control limit (UCL) H. The lower control limit (LCL) is 0 by 

definition for this one sided CUSUM chart. 

Step 7. If  𝐶𝑗  exceeds H, the process is declared OOC at the j-th test sample. If not, the process is 

thought to be IC and monitoring continues to the next test sample. 

Step 8. Follow-up: Recently Chowdhury et al. (2013) and McCracken et al. (2013) introduced 

the idea of p-value based follow up when a process is declared OOC. We follow the same idea 

and compute the p-values for the Wilcoxon test for location and the Ansari-Bradley test for scale 

respectively, based on the two samples; one with the m Phase I observations, and the other with 

the n observations from the j-th test sample. Denote the p-values of the corresponding tests as 𝑝1 

and 𝑝2 respectively. As in Chowdhury et al. (2013) and McCracken et al. (2013) we argue that if 

𝑝1 is very low but not 𝑝2, a shift in only location is indicated. If 𝑝1 is relatively high but 𝑝2 is 

low; only a shift in scale is suspected. If both p values are very low; a shift in both location and 

scale is declared.  

4. RUN LENGTH DISTRIBUTION 
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Brook and Evans (1972) and Woodall (1984) among others proposed approximating the 

run length distribution of various CUSUM procedures when parameters are known by using the 

notion of a Markov process. The run length distribution of a Phase II CUSUM process may be 

approximated by a Markov Process given the reference sample 𝑿𝒎, and the conditional average 

run length may be obtained using the properties of the Markov process. Since the conditional 

average run length is a random variable, one can find and use the unconditional average run 

length by integrating (averaging) over all possible conditional run lengths.  

In the present context, however, the exact conditional distribution of the Lepage statistic 

is itself complicated with no clear explicit form. As a consequence, the exact unconditional run 

length distribution of the proposed CUSUM Lepage procedure appears intractable. However, 

interested readers may explore the possibility of deriving a suitable approximation, noting that, 

given 𝑿𝒎, and as both  m, n tend to ∞ such that 
𝑚

𝑚+𝑛
→ 𝜆, 0 < 𝜆 < 1, 𝑆𝑖

2 = 𝑆1𝑖
2 +  𝑆2𝑖

2  follows a 

generalized chi-square distribution (see Jones (1983)) with non-centrality parameters: 

mean vector:  
𝜇1 𝑿𝒎 −𝜇1

𝜎1
,
𝜇2 𝑿𝒎 −𝜇2

𝜎2
 

′

, variance-covariance matrix:  

𝜎1
2 𝑿𝒎 

𝜎1
2

𝜎12  𝑿𝒎 

𝜎1𝜎2

𝜎12  𝑿𝒎 

𝜎1𝜎2

𝜎2
2 𝑿𝒎 

𝜎2
2

  , where 

𝜇1 𝑿𝒎 =
𝑛 𝑛 + 1 

2
+ 𝑛   𝐺  𝑋𝑖 −

1

2
 

𝑚

𝑖=1

, 𝜇2 𝑿𝒎 =    
𝑚 + 𝑛 + 1

2
− 𝑗 − 𝑖  

𝑛

𝑖
  𝐺 𝑋 𝑗    

𝑖
𝑚

𝑗 =1

𝑛

𝑖=0

 𝐺  𝑋 𝑗    
𝑛−𝑖

, 

𝜎1
2 𝑿𝒎 = 𝑛   𝐺  𝑋𝑖 𝐺 𝑋𝑖 

𝑚

𝑖=1

+    𝐺  𝑋𝑖 ⋏ 𝑋𝑗  − 𝐺  𝑋𝑖 𝐺 𝑋𝑗  

𝑚

𝑗 =1 ≠𝑖 

𝑚

𝑖=1

 , 

with 𝐺 = 1 − 𝐺 and 𝑋𝑖 ⋏ 𝑋𝑗 = 𝑚𝑎𝑥 𝑋𝑖 , 𝑋𝑗  , 

𝜎2
2 𝑿𝒎 =    

𝑚 + 𝑛 + 1

2
− 𝑗 − 𝑖 

2

 
𝑛

𝑖
  𝐺 𝑋(𝑗 )  

𝑖
𝑚

𝑗 =1

𝑛

𝑖=0

 𝐺  𝑋(𝑗 )  
𝑛−𝑖

− 𝜇2
2
 𝑿𝒎 , 

and 
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𝜎12 𝑿𝒎 + 𝜇1 𝑿𝒎 𝜇2 𝑿𝒎 =  𝑛    𝑛 − 𝑖  
𝑚 + 𝑛 + 1

2
− 𝑗 − 𝑖  

𝑛

𝑖
  𝐺 𝑋 𝑗    

𝑖
𝑚

𝑗 =1

𝑛

𝑖=0

 𝐺  𝑋 𝑗    
𝑛−𝑖

 

+
𝑛

2
    

𝑛!  𝑛 − 𝑖  𝑚 + 𝑛 + 1 − 2 𝑗′ + 𝑖 ′  

𝑖!  𝑖 ′ − 𝑖 !  𝑛 − 𝑖 ′ !
×  𝐺 𝑋 𝑗    

𝑖
𝑚

𝑗 ′=𝑗 +1

𝑚−1

𝑗 =1

𝑛

𝑖 ′=𝑖

𝑛−1

𝑖=0

 𝐺  𝑋 𝑗 ′  − 𝐺 𝑋 𝑗    
𝑖 ′−𝑖

 𝐺  𝑋 𝑗 ′   
𝑛−𝑖 ′

 

+
𝑛

2
    

𝑛!  𝑛 − 𝑖  𝑚 + 𝑛 + 1 − 2 𝑗′ + 𝑖 ′  

𝑖 ′!  𝑖 − 𝑖 ′ !  𝑛 − 𝑖 !
×

𝑗−1

𝑗 ′=1

𝑚

𝑗 =2

 𝐺  𝑋 𝑗 ′   
𝑖 ′

 𝐺 𝑋 𝑗   − 𝐺  𝑋 𝑗 ′   
𝑖 ′−𝑖

 𝐺  𝑋 𝑗    
𝑛−𝑖

𝑖

𝑖 ′=0

𝑛

𝑖=0

 

 

An outline of the proof is given in the Appendix. For computing approximate conditional 

ARL under the IC set up via Markov chain approach, one needs to obtain several transition 

probabilities. Those may be computed with some effort using the above approximate 

distribution. However, transition probabilities do not have simple explicit forms. Further 

approximations to obtain the asymptotic unconditional distribution appears very complicated and 

will be a major comutational challenge to meet in future.  

Given these complexities in the derivations of the conditional and the unconditional 

average run lengths, we employ Monte-Carlo simulations to evaluate the necessary quantities. 

Details of the simulations and the results are discussed in subsequent sections and subsections. 

4.1. Determination of H 

Numerical computations in R.2.14.1 software, based on Monte-Carlo simulations are 

used to determine H on the basis of 50,000 replicates. Because of the distribution-free nature of 

the CL chart, we generate m observations from a standard normal distribution for the Phase I 

sample and n observations from the same distribution for each test sample. The results, which are 

displayed in Table 1, show a pretty stable and meaningful estimates of the IC average run length 

(ARL0) and other percentiles of the IC run length distribution. We have chosen m = 30, 50, 100 

and 150 for the reference sample size and n = 5 and 11 for the test sample size as in Mukherjee 
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and Chakraborti (2011). The values of k, one of the key charting parameters are chosen as 0, 3 

and 6. Note that since 𝑉𝑎𝑟 𝑆𝑖
2|𝐼𝐶 = 4,  we consider 1.5 and 3 times the standard deviation of 

plotting statistic as the possible choices of k to cover different situations. No substaintial changes 

in the ARL figures could be obtained with minor (less than 0.5 times standard deviation of 

plotting statistic) changes in k and moreover, H and ARL values for any k in (0,6) can be 

obtained via interpolation using the three values of k as used in this article. For any given triplet 

(m,n,k), a search is conducted to obtain the appropriate 𝐻 value that ensures the ARL0 is close to 

a nominal (target) value. The fourth to the sixth columns of Table 1 give the required H values 

for target ARL0 = 250, 370 and 500 respectively. Thus, for example, when 30 reference 

observations and test samples of size 5 are available with k = 3 and an ARL0 of 500 is desired, 

the upper control limit H for the CL chart is given by 4.617. To justify the nonparametric nature 

of the proposed chart, it can be easily verified that for a given combination of (m,n,k;ARL0) the 

same H values as in Table 1 are valid for any other non-normal distribution because of the 

distribution-free nature of the plotting statistic under IC set-up. 

We see from Table 1 that that for any fixed combination of (m,n,k) values, the higher the 

nominal ARL0 values, the higher the values of H. Further for fixed n and k, H increases with the 

increase in the reference sample size m but the H decreases with an increase in the test sample 

size n for fixed m and k in almost all the cases except for a very few sampling fluctuations. 

Finally, as m and n both increase, H values tend to stabilizes as a function of the ratio 𝜆 =
𝑛

𝑚+𝑛
. 

<Table-1 Here> 

4.2.  IC performance of the Chart 

<Table-2 Here> 
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           Table 2 shows that the IC run length distribution is highly right skewed and consequently 

is worthwhile to study various summary measures viz. the mean, the SD and several percentiles 

including the first and the third quartiles. As mentioned earlier in 4.1, we simulate both the 

reference and the test samples from the standard normal distribution for m = 30, 50, 100, 150 and 

n = 5, 11 and k = 0, 3, and 6. For a given triplet (𝑚, 𝑛, 𝑘), we obtain H from Table 1, for a 

nominal (target) ARL0 of 500 and simulate various characteristics of the IC run length 

distribution.  

           It is observed that the target ARL0 value 500 is much higher than the medians for all 

(m,n,k) combinations. When m = 100 or 150, the median is more or less half of the target ARL0 = 

500. As the reference sample size m increases from 30 to 150, for a fixed n and k, all the 

percentiles including the median increase except the 95
th

 percentile and the SD decreases. The 

95
th

 percentile is seen to be more or less stable around 3.6 to 4.4 times the target ARL0 = 500 

except for the cases when m = 30 and 50 with k = 0. It is also observed that for fixed m and k, as 

test sample size increases, all percentiles except 3
rd

 quartile and 95
th

 percentile decrease and SD 

increases.  It is also of worth mentioning that in the majority of the combinations of (m,n,k), the 

3
rd

 quartiles of the run length distributions are closer to the nominal IC ARL0 value of 500. This 

indicates that the IC run length distribution of the proposed chart, like the same for many other 

control charts, is heavily skewed with a long right tail. 

5.  PERFORMANCE COMPARISONS 

We consider two popular distributions under the general location-scale family in order to 

facilitate the OOC performance comparisons. First (case I), the thin tailed symmetric normal 

distribution (N (θ, δ))  with pdf 𝑓 𝑢 =
1

𝛿 2𝜋
𝑒

−
1

2𝛿2(𝑢−𝜃)2

, 𝑢 ∈  −∞, ∞ ,  and second (case II), the 

heavy tailed symmetric Cauchy distribution (Cauchy (θ; δ)) with pdf 𝑓 𝑢 =
𝛿

𝜋(𝛿2+(𝑢−𝜃)2)
, 
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𝑢 ∈  −∞, ∞ . We examine the performance characteristics of the run length distribution when 

the IC sample in each case is taken from the corresponding standard distribution with θ = 0 and δ 

= 1. Thus in case I, the IC samples are taken from a N(0,1) distribution, with the OOC sample 

coming from a N(θ,δ) distribution. To examine the effects of shifts in the mean and the variance, 

40 combinations of (θ, δ) values are considered viz. θ = 0, 0.25, 0.5, 0.75, 1, 1.5, 2 and 3 and δ = 

1, 1.25, 1.5, 1.75 and 2 respectively. We not only study the performance of the CL charts for 

these two distributions, but also compare with that for the SL chart of Mukherjee and 

Chakraborti (2012) for the same combinations of shifts. For brevity, only the results for m = 50, 

100 and n = 5 are presented in Table 3. In case II, we examine the chart performance 

characteristics for the heavy tailed and symmetric Cauchy distribution for both the CL and SL 

charts, using the same combinations of the reference and test sample sizes and location and scale 

parameters (θ and δ), with the IC sample coming from a Cauchy(0,1) distribution. These results 

are shown in Table 4. Note that in Tables 3 and 4, the first row of each of the cells shows the 

ARL and (SDRL) values, whereas the second row shows the 5
th

, 25
th

, 50
th

, 75
th

, 95
th

 percentiles 

(in this order).  

In general, the simulation results reveal that the OOC run length distributions are also 

skewed to the right and this can be observed from Tables 3 and 4 for both charts. Moreover, 

except for minor sampling fluctuations, for fixed m, n, k and a given ARL0, the OOC ARL 

values as well as the percentiles all decrease sharply with the increasing shift in the location and 

also with the increasing shift in the scale. This (expected) phenomenon is seen for both the CL 

and SL charts and this indicates that both distribution-free charts are reasonably effective in 

detecting shifts in the location and/or on the scale. However, the effectiveness of the chart (speed 
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of detection) varies depending on the type of shift and the type of chart being considered. Both 

CL and SL charts detect a shift in the scale faster than that in the location.  

For example, from Table 3, we see that for a 25% increase in the location parameter (θ) 

when the scale parameter (δ) is in IC, there is about a 41% reduction in the ARL for the SL chart 

and about 38-51% reduction in the CL chart with m = 50 and varying choices of k. Moreover, in 

the same situation, for m = 100, we find nearly a 49% reduction in the ARL of the SL chart and 

about 50-63% reduction in that of the CL chart. However, for a 25% increase in the scale 

parameter when the location parameter is in IC,  there is about 78.7% and 80% reduction in the 

ARL for the SL chart with both m = 50 and 100 respectively. On the other hand, we observe a 

reduction of 79-87% in the ARL of the CL chart for m = 50 and nearly 81-89% reduction for m = 

100 and different choices of k. Finally, when both the location and scale parameters increase by 

25%, the ARL for the SL chart decreases by nearly 85% and the same for the CL chart reduces 

by nearly 85-91% for m = 50.  

The pattern is quite similar for the SDRL for both charts. For example, we see that for a 

25% increase in the location when the scale is IC, the SDRL decreases for an increase in the shift 

in both parameters but decreases at a faster rate for a shift in the scale parameter. For example, 

when m = 100, for a 25% increase in the location only, the SDRL decreases by 44.5% for the SL 

chart and around 38-51% for the CL chart, while for a 25% increase in the scale parameter only, 

the SDRL decreases by 83.2% for the SL chart and 82-93%  for the CL chart.  From Table 3, it is 

interesting to note that the CL chart with suitable k, performs better than the SL chart not only in 

detecting small shifts in the parameters, but for larger shift as well.  

Next, it is useful to examine their OOC performance for underlying distributions that 

have tails heavier than the normal since heavier-tailed symmetric distributions under the 
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location-scale family, such as the Cauchy distribution arise in applications where extreme values 

can occur with higher probability. Keeping this in mind we repeat the simulation study with data 

from the Cauchy distribution. The performance characteristics of the run length distribution were 

evaluated when the IC sample is taken from a Cauchy(0,1) distribution, but the test samples are 

from a Cauchy(θ,δ) distribution. To study the impact of a shift in the location and scale, as in the 

normal case, we study the same 40 combinations of θ and δ values. From Table 4, it is seen that 

for the Cauchy distribution, the general patterns in the OOC ARL values remain the same as in 

the case of the normal distribution, but the magnitudes of the ARL values are much higher for a 

similar shift in the location or in the scale parameter, indicating a moderately slower detection of 

shifts under the heavier-tailed distribution. For example, when m = 100, k = 0 and the location 

and scale both increase by 25%, the ARL is 161.7 compared to 39.3 in the normal case for the 

CL chart. Moreover, the percentiles as well as the SDRL values all increase under the Cauchy 

distribution.  

In summary, Tables 3 and 4 show that for any kind of shift in the process average or/and 

variability, the proposed CL chart outperforms the SL chart. However, the variation in the 

performance of the CL chart can be further explained by the reference value, k which is  

discussed in the next section. In this context, it is worth mentioning that to the best of our 

knowledge, there is no competing  parametric Phase II CUSUM chart available in the literature 

for joint monitoring of parameters of a normally distributed processes. However, if we compare 

the normal theory Modified Max Chart or the Modified Shewhart Distance chart as in McCraken 

et al. (2013) with  the nonparametric SL chart, we see that the non parametric chart for joint 

monitoring is as good as its parametric counterpart or better in many situations. The reason is 

that the distance or the max type charts are Shewhart type charts based on the combination of 
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two optimal test statistics but not on a single optimal test. Robust performance of Lepage 

Statistic in joint monitoring over the Max or the distance type chats also motivates us to develop 

a CUSUM chart based on Lepage statistic.  

6.   EFFECT OF k ON THE PERFORMANCE OF THE CHART 

It is seen that the reference value, k, of the CL chart has a significant impact on both the 

IC and OOC performance of the chart. In the IC set up, for fixed m and n and ARL0, we can see 

from Table 1 that the value of H decreases with the increase in k. Table 2 shows that SDRL0 is 

relatively higher when k = 0 but stabilizes as k increases. 

            In the OOC set-up, it is evident from Table 3 that the CL chart is able to detect smaller 

shifts in location quite successfully with k = 0, uniformly for all choices of m and n under the 

normal distribution when variability is under control, which is quite expected for a CUSUM 

chart. But, interestingly, the CL chart out performs the SL chart, even for moderate to large shifts 

in the location (that is, 𝜃 ≥ 1) with k = 3 or 6, except for 𝜃 = 3, where both the charts perform 

similarly. The CL chart displays nearly similar behavior for a scale shift when underlying model 

is normal with a stable process location. We see that if 𝜃 = 0, the CL chart with k = 0 is the best 

for 1 < 𝛿 ≤ 2. From Table 3, we further see that for small shifts in location along with small to 

large shifts in scale, the CL chart shows best performance for 𝑘 = 0  and for large shifts in 

location accompanied by small to large shifts in scale, the same chart performs best for k = 3. 

Note that the OOC performance of the CL chart with 𝑘 = 6 shows nearly similar OOC 

performance as that of the SL chart and both are usually the best choice to detect large shift in 

mean.  

             OOC performance of the CL chart for the Cauchy distribution has both similarity and 

dissimilarity with the same for the normal distribution. Table 4 shows that for m = 50, the CL 
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chart performs better than the SL chart in detecting small, moderate to large shifts in location or 

scale or both for only k = 0. There is only one unusual behaviour, we have observed for the case 

of 𝜃 = 0 and 𝛿 = 1.25, where k = 6 gives the best result for the CL chart. For m = 100, the same 

characteristics are shown by the CL chart for k = 0 except in one case where there is a large shift 

in location irrespective of shifts in scale and where the CL chart of course performs better for k = 

3. Table 4 also reveals that for k = 0, ARL in the CL chart decreases by 17% for m = 50 and by 

21% for m = 100 as compared to a very small reduction in ARL in SL chart for a 25% increase in 

the location. 

In general, it is observed that the CL chart performs better in terms of both ARL and 

SDRL for k = 0 for both the normal and Cauchy distributions for shifts in location, scale or both. 

There are a few exceptions to this in both the distributions as stated above. It is also noted that 

the magnitude of reduction in ARL or SDRL is much higher in case of normal distribution than 

Cauchy for different types of shits in process parameters. In general, it is recommended to 

consider smaller values of k, say k = 0 for detecting smaller to medium shift in thin tailed 

distributions and smaller to larger shifts in the case of heavy tailed distributions. If the target 

shift is relatively large in a thin tailed distribution or very large in a heavy tailed distribution, one 

should use k = 3 to get a quick OOC signal. 

7.   ILLUSTRATIVE EXAMPLE 

Here, we illustrate the proposed nonparametric CLchart using the well-known piston ring 

data in Montgomery (2005) (Table 5.1 and 5.2, respectively). Piston rings for an automotive 

engine are produced by a forging process. The goal is to establish statistical control of the inside 

diameters of the rings manufactured by this process. Twenty five samples each of size 5, shown 

in Table 5.1 of Montgomery (2005), are taken. A Phase I analysis in Montgomery (2005) 
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concluded that we may consider this data set with 125 observations, as the set of reference data. 

Further, in Table 5.2 of Montgomery (2005), fifteen Phase II samples (test samples) each of size 

5 are given. That is, for the present purpose, n = 5. Using simulations, for a target ARL0 of 500, 

for m = 125, n = 5 and for k = 0, 3 and 6, we find H to be 28.08927, 6.804037 and 3.445849 

respectively. The lower control limit is 0 by default.The fifteen cusum-Lepage plotting statistics 

are given in Table 5 and shown in the following figures for the three choices of k. 

Table 5: CL Plotting statistics for m = 125  n = 5 and p-values for Follow-Up  

Sample no k = 0   

H=28.09 

k= 3 

H=6.80 

k = 6 

H= 3.44 

p-value for each sample 

Wilcoxon Test AB Test 

1 0.00 0 0 0.2234 0.1418 

2 0.00 0 0 0.8416 0.7803 

3 2.21 0 0 0.0412 0.8748 

4 0.78 0 0 0.5014 0.7434 

5 2.51 0 0 0.3930 0.0829 

6 1.90 0 0 0.2448 0.8652 

7 1.12 0 0 0.3385 0.5937 

8 2.04 0 0 0.3700 0.1457 

9 4.08 0 0 0.0564 0.5356 

10 6.84 0 0 0.0372 0.5283 

11 5.15 0 0 0.7666 0.6363 

12 16.45 8.30 5.30 0.0027 0.0390 

13 30.03 18.88 12.88 0.0016 0.0180 

14 49.42 35.27 26.27 0.0005 0.0024 

15 52.06 34.90 22.90 0.0389 0.5524 

 

< Figure 1. Here> 

The CL chart for k = 3 and 6 shows that the process stays in control for the first eleven 

test samples and goes OOC for the first time at sample number 12. The OOC signal persists in all 

the test samples from sample number 12 onwards till sample number 15. Note that, Mukherjee 

and Chakraborti (2012) and Chowdhury et al. (2013) also found first signal at the 12
th

 test 

sample. Following the signal from the chart at sample 12, it is of interest to see if the signal is 
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due to a shift in location, scale or both. For this post signal follow-up diagnostic stage, we use 

step 8 of Section 4 and carry out a two-sided two-sample Wilcoxon rank-sum test first for 

location between the 125 observations from the reference sample (Phase I) and the 5 (Phase II) 

observations from the 12
th

 test sample. This test yields a p-value 𝑝1 = 0.0027. Next, we conduct a 

two-sided two-sample Ansari-Bradley test for scale using the same data and find the p-value as 

𝑝2 = 0.0390. Thus, while 𝑝1 is much smaller than 1%,  𝑝2 lies between 1% and 5%.  Hence, we 

conclude that there is strong evidence of a shift in location with some evidence of a shift in scale 

at test sample number 12. 

Next, we  consider test sample number 13 which has been signaled to be OOC.  If we 

carry out the same tests between the reference samples and test sample 13, we get 𝑝1 = 0.001634 

and 𝑝2 = 0.01798, again indicating strong evidence of a shift in location with some evidence of a 

shift in scale. Note that, if k = 0 is used, the CL chart signals an OOC process from sample 

number 13 onwards without producing any signal at sample number 12 as in Mukherjee et al. 

(2013). This phenomenon of a delayed signal with k = 0 may be explained with our findings in 

Table 3 noting that the Piston ring data as in Montgomery (2005) is close to normal. Table 3 

clearly shows that k = 3 is the best choice for detecting moderate to large shift in both location 

and scale.  

Further, sample number fifteen shows OOC behavior irrespective of the choice of k and it 

is one such OOC signal which is not found in Mukherjee and Chakraborti (2012) and 

Chowdhury et al. (2013) in the context of joint monitoring with the same piston ring data. Note 

that none of the charts including the Shewhart in Montgomery (2005) has shown the fifteenth 

test sample to be OOC. However, Mukherjee et al. (2013) observed the same phenomenon at the 

15
th

 sample using CUSUM X-bar chart and Excedence CUSUM chart for detecting shift in the 
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location parameter. In the context of joint monitoring, it is the CL chart which has been able to 

identify the fifteenth sample having come from an OOC process, although it is not known 

whether or not this is a genuine OOC signal or a false alarm. If we apply follow-up procedure for 

sample 15, we see while 𝑝1 is marginally less than 5%, 𝑝2 is significantly higher than 5%.  

Hence, we conclude that there is evidence of a shift in location and no evidence of a shift in scale 

at test sample number 15.  

8. SUMMARY AND CONCLUSIONS 

In this paper we consider  a single phase II distribution-free CUSUM control chart based 

on the well-known Lepage (1972) statistic for joint monitoring of the location and scale 

parameters of a continuous distribution using a reference sample from a Phase I analysis.  Our 

results show that the proposed chart has nice properties and is more effective than a competing 

distribution-free chart. 
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Appendix 

Conditional Distribution of 𝑺𝑳
𝟐: 

First note the following Lemma A.1. As a consequence of the Lemma A.1, we can easily obtain the 

required conditional distribution using preliminary concepts of distribution theory. 

http://www.google.com.hk/search?tbo=p&tbm=bks&q=inauthor:%22A.+W.+van+der+Vaart%22
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Lemma A.1: Given  𝑿𝒎 , and as both m, n tends to ∞ such that 
𝑚

𝑚+𝑛
→ 𝜆 , asymptotic joint distribution of 

𝑇1 and 𝑇2 is bi-variate normal with mean vector 𝝁 𝑿𝒎  and variance − covariance matrix 𝜮 𝑿𝒎 , such 

that 

𝝁 𝑿𝒎 =  𝜇1 𝑿𝒎 , 𝜇2 𝑿𝒎  
′
and𝚺 𝑿𝒎 =  

𝜎1
2 𝑿𝒎 𝜎12 𝑿𝒎 

𝜎12 𝑿𝒎 𝜎2
2 𝑿𝒎 

 , 

Proof: Note that, 

𝑇1 =   𝐼 𝑌𝑗 > 𝑋𝑖 

𝑚

𝑖=1

𝑛

𝑗 =1

+   𝐼 𝑌𝑗 > 𝑌𝑖 

𝑛

𝑗 =1

𝑛

𝑖=1

. 

Therefore, given 𝑿𝒎 , we have   

𝑇1 =   𝐼 𝑌𝑗 > 𝑥𝑖 

𝑚

𝑖=1

𝑛

𝑗 =1

+
𝑛 𝑛 + 1 

2
= 𝑛  𝐺  

𝑛 (𝑥𝑖)

𝑚

𝑖=1

+
𝑛 𝑛 + 1 

2
. 

Note that  

𝐸 𝑇1 𝑿𝒎 = 𝒙𝒎 =   𝐺  𝑥𝑖 

𝑚

𝑖=1

𝑛

𝑗 =1

+
𝑛 𝑛 + 1 

2
= 𝑛  𝐺  𝑥𝑖 

𝑚

𝑖=1

+
𝑛 𝑛 + 1 

2
, 

and 

𝑉 𝑇1 𝑿𝒎 = 𝒙𝒎 = 𝑛2𝑉   𝐺  
𝑛 (𝑥𝑖)

𝑚

𝑖=1

 = 𝑛   𝐺  𝑋𝑖 𝐺 𝑋𝑖 

𝑚

𝑖=1

+    𝐺  𝑋𝑖 ⋏ 𝑋𝑗  − 𝐺  𝑋𝑖 𝐺 𝑋𝑗   

𝑚

𝑗=1 ≠𝑖 

𝑛

𝑖=1

 . 

Further note that, using Chernoff-Savage representation of Ansari-Bradley Statistics, we can express 

 𝑇2 𝑿𝒎 = 𝒙𝒎  by  

  
𝑚 + 𝑛 + 1

2
− 𝑗 − 𝑛𝐺 𝑛 (𝑥(𝑗 )) 

𝑚

𝑗 =1

, 
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where 𝑥(𝑗 ) is the j-th order statistics of the observed sample 𝒙𝒎. 

Observe that, for any 𝑖 = 0,1,2, . . . , 𝑛, 

𝑃𝑟𝑜𝑏 𝑛𝐺 𝑛(𝑥 𝑗  ) = 𝑖 =  
𝑛

𝑖
  𝐺 𝑋(𝑗 )  

𝑖
 𝐺  𝑋(𝑗)  

𝑛−𝑖
. 

Therefore, it is not difficult to obtain the desired expression for E 𝑇2 𝑿𝒎 = 𝒙𝒎  and V 𝑇2 𝑿𝒎 = 𝒙𝒎 . 

Further note that, 

𝑛   𝐺  
𝑛 (𝑥𝑗 )

𝑚

𝑗 =1

 ×    
𝑚 + 𝑛 + 1

2
− 𝑗 − 𝑛𝐺 𝑛(𝑥(𝑗 )) 

𝑚

𝑗 =1

 

= 𝑛  𝐺  
𝑛 (𝑥𝑗 )  

𝑚 + 𝑛 + 1

2
− 𝑗 − 𝑛𝐺 𝑛 (𝑥(𝑗)) 

𝑚

𝑗 =1

+  𝑛   𝐺  
𝑛 (𝑥𝑗 )  

𝑚 + 𝑛 + 1

2
− 𝑗 ′ − 𝑛𝐺 𝑛(𝑥(𝑗 ′)) 

𝑚

𝑗 ′=𝑗+1

𝑚−1

𝑗 =1

+ 𝑛   𝐺  
𝑛(𝑥𝑗 )  

𝑚 + 𝑛 + 1

2
− 𝑗 ′ − 𝑛𝐺 𝑛 (𝑥(𝑗 ′)) 

𝑗−1

𝑗 ′=1

𝑚

𝑗 =2

 . 

 

This provides us an expression for E(𝑇1𝑇2 | 𝑿𝒎). Then, after a lengthy but straight forward computation, 

letting both m, n tends to ∞ such that 
𝑚

𝑚+𝑛
→ λ , for any arbitrary constant 𝑙𝑖 ,  𝑖 = 1, 2  , applying central 

limit theorem on 

1

 𝑚
 𝑙1(𝑇1 − 𝜇1 𝑿𝒎 ) + 𝑙2(𝑇2 − 𝜇2 𝑿𝒎   

given  𝑿𝒎, and subsequently using Cramer-Wold device (see van der Vaart (2000, pp-16)), we can 

establish the Lemma A. 

http://www.google.com.hk/search?tbo=p&tbm=bks&q=inauthor:%22A.+W.+van+der+Vaart%22
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Table-1.   Charting constant H for the CL chart, for various values of m and n, and for some standard (target) 

values of ARL0 

Chart 

Parameter 

Reference 

Sample Size 

Test 

Sample size 

The Charting Constant 

(Upper Control Limit) : H 

 

k 

 

m 

 

n 

Target 

ARL0 = 250 

Target 

ARL0 = 370 

Target 

ARL0 = 500 

 

 

 

 

0 

30 

 

5 13.548 15.529 17.183 

11 11.470 12.888 14.143 

50 5 16.705 18.919 21.188 

11 14.731 16.467 18.485 

100 5 20.227 23.730 26.551 

11 19.520 22.276 24.953 

150 

 

5 22.320 26.062 29.432 

11 21.537 25.222 28.476 

 

 

 

 

3 

30 

 

5 3.546 4.236 4.617 

11 3.607 4.089 4.457 

50 5 4.498 5.110 5.617 

11 4.326 4.908 5.366 

100 5 5.263 5.994 6.531 

11 5.197 5.882 6.435 

150 

 

5 5.486 6.259 6.853 

11 5.507 6.277 6.859 

 

 

 

 

6 

30 

 

5 0.543 1.150 1.568 

11 0.489 0.927 1.287 

50 5 1.277 1.961 2.379 

11 1.125 1.710 2.133 

100 5 2.016 2.689 3.279 

11 1.906 2.563 3.112 

150 

 

5 2.214 2.989 3.596 

11 2.212 2.926 3.475 

Table-2.  IC performance characteristics of the CL chart for ARL0 = 500  

Simulated values  with k=0 

m n H ARL0 SDRL0 5th Percentile 1st Quartile Median 3rd Quartile 95th Percentile 

30 5 17.183 500.600 1049.699 13 40 108 365 2999 

30 11 14.143 504.448 1066.059 8 27 87 372 3046 

50 5 21.188 495.915 967.781 20 58 142 414 2523 

50 11 18.485 503.024 997.102 13 42 122 419 2690 

100 5 26.551 488.914 837.785 33 88 194 480 2052 

100 11 24.953 508.989 889.857 26 75 179 494 2271 

150 5 29.432 493.945 768.880 42 107 229 521 1888 

150 11 28.476 504.454 810.384 35 95 215 528 2043 

Simulated values with k=3 

30 5 4.6173 504.517 712.892 7 61 201 540 1952 

30 11 4.4567 501.870 846.033 6 51 181 547 2200 

50 5 5.617 500.868 787.318 10 72 217 566 1994 

50 11 5.366 497.409 780.593 8 67 209 571 2019 

100 5 6.531 506.972 695.658 15 100 267 620 1830 

100 11 6.435 502.536 645.015 12 91 255 614 1876 

150 5 6.853 501.232 612.544 17 108 281 636 1694 

150 11 6.859 494.026 632.737 14 101 276 634 1733 

Simulated values with k=6 

30 5 1.568 513.270 863.696 9 63 194 545 2204 

30 11 1.287 497.279 817.785 8 58 192 553 2082 

50 5 2.379 480.159 740.192 12 77 217 549 1873 

50 11 2.133 501.533 759.076 11 74 224 590 1957 

100 5 3.279 503.980 676.439 17 105 274 621 1801 

100 11 3.111 506.052 678.493 16 97 269 634 1805 

150 5 3.596 495.321 610.456 19 119 305 684 1754 

150 11 3.475 503.862 641.108 17 107 285 644 1728 
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Figure-1. 
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Table-3.  Performance comparisons between the Shewhart type and CUSUM type Lepage charts for the Normal (θ,δ) distribution with ARL0 = 500. 

 

θ 

m=50, n=5 

 

m=100, n=5 

 

Shewhart Lepage Chart Proposed CUSUM Lepage chart Shewhart Lepage Chart Proposed CUSUM Lepage chart 

k=0 k=3 k=6 k=0 k=3 k=6 

δ =1.00 

0 499.6 (918.9) 

13, 78, 215, 534, 1886 

504.0  (978.7) 

20, 58, 144, 422, 2523 503.9 (797.4) 

10, 73, 216, 565, 2014 

487.4 (753.4) 

12, 78, 225, 555, 1890 

513.0  (738.9) 

18, 106,  276,  635, 

1792 

481.1 (824.2) 

33, 87, 192, 472, 

1966 

471.3 (640.9) 

15, 95, 252, 584, 

1646 

503.98 (676.4) 

17, 105, 274, 621, 

1801 

0.25 292.7   (641.3) 

7, 40, 116, 308, 1124 

248.9 (645.3) 

12, 30, 64, 165, 1058 

291.2 (550.9) 

5, 35, 107, 300, 1170 

301.0 (554.9) 

6, 39, 114, 317, 1186 

257. 6   (410.3) 

9, 47, 127, 303, 917 

177.8 (407.7) 

18, 40, 75, 157, 598 

242.0 (397.4) 

5, 40, 113, 280, 890 

252.2 (399.8) 

7, 45, 120, 296, 920 

0.5 94.7  (253.9) 

2, 12, 34, 91, 351 

44.1 (141.6) 

6, 13, 22, 40, 125 

87.9 (211.1) 

2, 10, 30, 83, 346 

91.3 (209.1) 

2, 12, 34, 89, 345 

66.5   (98.6) 

3,  13,  35,  80, 237 

32.9 (37.8) 

8, 16, 24, 38, 82 

56.6 (92.1) 

2, 10, 28, 65, 203 

65.1 (100.2) 

2, 13, 33, 77, 232 

0.75 26.9  (61.1) 

1, 5, 12, 28, 96 

13.3  (12.5) 

3, 7, 11, 16, 32 

22.1 (57.20 

1, 3, 9, 22, 82 

24.7 (45.7) 

1, 4, 11, 26, 92 

20.3  (27.3) 

1,  5,  12,  25, 68 

13.2 (7.7) 

4, 8, 12, 16, 27 

14.9 (20.6) 

1, 3, 8, 18, 51 

18.9 (25.5) 

1, 4, 10, 24, 64 

1.0 9.3 (18.6) 

1, 2, 5,11, 31 

7.1 (4.4) 

2, 4, 6, 9, 15 

6.9 (10.9) 

1, 2, 4, 8, 22 

8.7 (14.1) 

1, 2, 5, 10, 29 

7.7   (8.8) 

1, 2,  5, 10,  24 

7.4 (3.6) 

2, 5, 7, 9, 14 

5.3 (5.6) 

1, 2, 3, 7, 16 

6.99 (8.2) 

1, 2, 4, 9, 22 

1.5 2.3  (2.2) 

1, 1, 2, 3, 6 

3.4 (1.4) 

2, 2, 3, 4, 6 

1.99 (1.5) 

1, 1, 2, 2, 5 

2.2 (1.98) 

1, 1, 2, 3, 6 

2.1    (1.7) 

1, 1,  2, 3, 5 

3.6 (1.4) 

2, 2, 3, 4, 6 

1.9 (1.1) 

1, 1, 2, 2, 4 

2.0 (1.5) 

1, 1, 2, 2, 5 

2 1.3   (0.6) 

1,  1,  1,  1,  2 

2.3 (0.7) 

1, 2, 2, 3, 4 

1.2 (0.5) 

1, 1, 1, 1, 2 

1.2 (0.6) 

1, 1, 1, 1, 2 

1.2   (0.5) 

1, 1,  1, 1, 2 

2.5 (0. 7) 

2, 2, 2, 3, 4 

1.2 (0.5) 

1, 1, 1, 1, 2 

1.2 (0.5) 

1, 1, 1, 1, 2 

3 1.0   (0.1) 

1,  1,  1,  1,  1 

1.6 (0.5) 

1, 1, 2, 2, 2 

1.0 (0.07) 

1, 1, 1, 1, 1 

1.0 (0.06) 

1, 1, 1, 1, 1 

1.0   (0.1) 

1, 1, 1, 1,  1 

2.0 (0.2) 

2, 2, 2, 2, 2 

1.0 (0.1) 

1, 1, 1, 1, 1 

1.0 (0.1) 

1, 1, 1, 1, 1 

δ =1.25 

0 106.2  (197.8) 

4, 21, 54 124, 369 

64.7 (138.2) 

9, 19, 34, 65, 200 

95.1 (155.0) 

2, 17, 47, 113, 340 

103.7 (157.4) 

3, 20, 53, 124, 366 

102.9   (124.1) 

5, 25, 62, 133, 337 

54.8 (59.2) 

12, 24, 39, 64, 144 

86.1 (110.8) 

2, 19, 50, 110, 291 

99.8 (123.7) 

4, 24, 60, 128, 330 

0.25 73.6   (116.1) 

3, 14, 37, 86, 261 

46.4 (111.6) 

7, 15, 26, 47, 131 

70.3 (120.1) 

2, 12, 33, 81, 256 

74.5 (119.2) 

2, 14, 37, 87, 270 

70.6   (92.3) 

3, 17,  41,  89,  232 

39. 3 (36.7) 

9, 19, 30, 47, 99 

56.9 (75.7) 

2, 12, 32, 71, 195 

68.8 (89.5) 

3, 16, 40, 87, 230 

0.5 35.4  (55.5) 

2, 7, 18, 42, 123 

21.4 (30.3) 

4, 10, 15, 25, 55 

31.0 (54.5) 

2, 6, 15, 35, 113 

33.7 (51.4) 

2, 7, 17, 40, 119 

30.9   (38.8) 

2, 8, 18, 40, 101 

20.5 (14.0) 

6, 12, 17, 25, 46 

23.7 (32.8) 

2, 5, 13, 29, 78 

29.5 (37.3) 

2, 7, 17, 38, 97 

0.75 15.2  (22.5) 

1, 4, 8, 18, 51 

11.3 (8.5) 

3, 6, 9, 14, 26 

12.7 (19.5) 

1, 3, 7, 15, 43 

14.8 (21.5) 

1, 3, 8, 18, 50 

13.6   (15.6) 

1, 4, 9, 18, 43 

11.6 (6.5) 

3, 7, 10, 15, 24 

10.0 (11.8) 

1, 3, 6, 13, 31 

12.8 (14.99) 

1, 3, 8, 17, 41 

1.0 7.4   (9.3) 

1, 2, 4, 9, 23 

7.0 (4.2) 

2, 4, 6, 9, 15 

5.8 (7.1) 

1, 2, 4, 7, 18 

7.2 (9.2) 

1, 2, 4, 9, 23 

6.7   (7.0) 

1, 2, 4, 9, 20 

7.4 (3.7) 

2, 5, 7, 10, 14 

4.98 (4.9) 

1, 2, 3, 6, 14 

6.2 (6.7) 

1, 2, 4, 8, 19 

1.5 2.6   (2.4) 

1, 1, 2, 3, 7 

3.7 (1.7) 

2, 2, 3, 5, 7 

2.3 (1.7) 

1, 1, 2, 3, 6 

2.5 (2.2) 

1, 1, 2, 3, 6 

2.5   (2.1) 

1, 1, 2, 3, 7 

4.0 (1.7) 

2, 3, 4, 5, 7 

2.1 (1.4) 

1, 1, 2, 3, 5 

2.3 (1.9) 

1, 1, 2, 3, 6 

2 1.4  (0.9) 

1,  1,  1,  2,  3 

2.6  (0.9) 

2, 2, 2, 3, 4 

1.4  (0.7) 

1, 1, 1, 2, 3 

1.4 (0.8) 

1, 1, 1, 2, 3 

1.4   (0.8) 

1, 1, 1, 2, 3 

2.8 (0.9) 

2, 2, 3, 3, 5 

1.4 (0.6) 

1, 1, 1, 2, 3 

1.4 (0.7) 

1, 1, 1, 2, 3 

3 1.0   (0.2) 

1,  1,  1,  1,  1 

1.7 (0.5) 

1, 1, 2, 2, 2 

1.0 (0.2) 

1, 1, 1, 1, 1 

1.0 (0.15) 

1, 1, 1, 1, 1 

1.0    (0.2) 

1, 1, 1, 1, 1 

2.1 (0.3) 

2, 2, 2, 2, 3 

1.0 (0.2) 

1, 1, 1 1, 1 

1.0 (0.1) 

1, 1, 1, 1, 1  

δ =1.50 

0 36.82  (46.98) 

2, 9, 22, 47, 118 

20.7 (17.7) 

5, 10, 16, 25, 50 

30.7 (42.99) 

2, 6, 17, 38, 106 

35.6 (46.3) 

2, 8, 11, 45, 120 

37.5   (42.2) 

2, 10, 24, 50, 118 

21.5 (13.3) 

7, 13, 19, 27, 46 

27.7 (33.2) 

2, 7, 17, 36, 91 

35.95 (41.7) 

2, 9, 22, 47, 115 

0.25 30.64  (38.81) 

2, 7, 18, 39, 102 

18.4 (15.8) 

4, 9, 15, 23, 43 

25.2 (35.4) 

2, 5, 14, 31, 84 

30.1 (39.3) 

2, 7, 17, 38, 101 

29.9   (34.2) 

2, 8, 19,  39,  91 

19.0 (11.4) 

6,11, 17, 24, 40 

22.2 (26.1) 

2, 6, 14, 29, 71 

27.97 (32.0) 

2, 7, 18, 37, 89 
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0.5 19.0  (24.77) 

1, 5, 11, 24, 64 

13.4, (9.5) 

3, 7, 11, 17, 30 

15.4 (20.8) 

1, 4, 9, 19, 52 

18.6 (24.7) 

1, 4, 11, 23, 62 

17.8   (19.7) 

1, 5, 12,  24, 55 

13.9 (7.8) 

4, 9, 12, 18, 28 

13.2 (14.8) 

1, 4, 8, 17, 42 

16.99 (19.5) 

1, 4, 11, 22, 54 

0.75 10.78  (12.87) 

1, 3, 7, 14, 34 

9.2 (5.8) 

2, 5, 8, 12, 20 

8.5 (10.3) 

1, 2, 5, 11, 27 

10.4 (12.9) 

1, 3, 6, 13, 33 

10.2  (10.7) 

1, 3, 7, 14, 30 

9.9 (5.2) 

3, 6, 9, 13, 19 

7.5 (7.8) 

1, 2, 5, 10, 23 

9.6 (10.7) 

1, 3, 6, 13, 30 

1.0 6.5   (7.2) 

1, 2, 4, 8, 19 

6.7 (3.8) 

2, 4, 6, 9, 14 

5.0 (5.4) 

1, 2, 3, 6, 15 

5.98 (6.8) 

1, 2, 4, 8, 18 

6.1   (6.1) 

1, 2, 4, 8, 18 

7.2 (3.5) 

2, 5, 7, 9, 14 

4.6 (4.3) 

1, 2, 3, 6, 13 

5.6 (5.6) 

1, 2, 4, 7, 17 

1.5 2.8   (2.5) 

1, 1, 2, 4, 8 

4.0 (1.9) 

2, 2, 4, 5, 8 

2.4 (1.2) 

1, 1, 2, 3, 6 

2.7 (2.3) 

1, 1, 2, 3, 7 

2.7   (2.2) 

1, 1,  2, 3, 7 

4.3 (1.9) 

2, 3, 4, 5, 8 

2.3 (1.6) 

1, 1, 2 3, 5 

2.5 (2.0) 

1, 1, 2, 3, 7 

2 1.6   (1.1) 

1, 1, 1, 2, 4 

2.8 (1.1) 

2, 2, 2, 3, 5 

1.5 (0.86) 

1, 1, 1, 2, 3 

1.6 (0.99) 

1, 1, 1, 2, 4 

1.6   (1.0) 

1, 1, 1, 2, 4 

3.0 (1.1) 

2, 2, 3, 4, 5 

1.5 (0.8) 

1, 1, 1, 2, 3 

1.6 (0.9) 

1, 1, 1, 2 3 

3 1.1   (0.3) 

1, 1, 1, 1, 2 

1.8 (0.6) 

1, 1, 2, 2, 3 

1.1 (0.3) 

1, 1, 1, 1, 2 

1.1 (0.3) 

1, 1, 1, 1, 2 

1.1   (0.3) 

1, 1, 1, 1, 2 

2.2 (0.4) 

2, 2, 2, 2, 3 

1.1 (0.3) 

1, 1, 1, 1, 2 

1.1 (0.3) 

1, 1, 1, 1, 2 

δ =1.75 

0 18.5   (20.7) 

1, 5, 11, 24, 59 

12.3 (7.7) 

3, 7, 11, 16, 26 

14.0 (17.2) 

1, 4, 8, 18, 45 

17.7 (21.1) 

1, 4, 11, 23, 57 

19.1   (20.3) 

1, 5, 13,  26, 59 

13.2  (6.8) 

4, 9, 12, 17, 26 

12.9 (14.1) 

1, 4, 8, 17, 40 

17.5 (19.0) 

1, 5, 11, 24, 54 

0.25 16.7   (20.4) 

1, 4, 11, 22, 53 

11.5 (7.1) 

3, 7, 10, 14, 24 

12.6 (14.9) 

1, 3, 8, 16, 40 

15.6 (18.3) 

1, 4, 10, 20, 50 

16.4   (17.2) 

1, 5, 11, 22,  50 

12.5 (6.4) 

4, 8, 11, 16, 24, 

11.5 (12.2) 

1, 3, 8, 15, 35 

15.5 (16.7) 

1, 4, 10, 21, 48 

0.5 12.1   (13.9) 

1, 3, 8, 16, 37 

9.6 (5.7) 

3, 6, 9, 12, 20 

9.3 (10.8) 

1, 2, 6, 12, 29 

11.6 (13.5) 

1, 3, 7, 15, 37 

12.1   (12.5) 

1, 4,  8, 16,  37 

10.5 (5.3) 

3, 7, 10, 13, 20 

8.6 (9.0) 

1, 2, 6, 11, 26 

11.2 (12.0) 

1, 3, 7, 15, 35 

0.75 8.3   (9.0) 

1, 2, 5, 11, 25 

7.8 (4.4) 

2, 5, 7, 10, 16 

6.4 (6.99) 

1, 2, 4, 8, 20 

7.9 (8.9) 

1, 2, 5, 10, 25 

8.4  (8.3) 

1,  3,  6, 11,  24 

8. 5 (4.2) 

3, 6, 8, 11, 16 

5.97 (5.8) 

1, 2, 4, 8, 17 

7.5 (7.6) 

1, 2, 5, 10, 22 

1.0 5.7   (5.8) 

1, 2, 4, 7, 17 

6.2 (3.3) 

2, 4, 6, 8, 12 

4.4 (4.3) 

1, 2, 3, 6, 12 

5.3 (5.6) 

1, 2, 3, 7, 16 

5.5   (5.2) 

1,  2,  4,  7, 16 

6.7 (3.2) 

2, 4, 6, 8, 13 

4.2 (3.7) 

1, 2, 3, 5, 11 

5.1 (4.9) 

1, 2, 3, 7, 15 

1.5 2.9   (2.6) 

1, 1, 2, 4, 8 

4.1 (1.9) 

2, 2, 4, 5, 8 

2.5 (1.9) 

1, 1, 2, 3, 6 

2.7 (2.4) 

1, 1, 2, 3, 7 

2.8   (2.4) 

1, 1,  2, 4,  7 

4.4 (1.9) 

2, 3, 4, 6, 8 

2.4 (1.7) 

1, 1, 2, 3, 6 

2.6 (2.1) 

1, 1, 2, 3 7 

  2 1.8  (1.2) 

1, 1, 1, 2, 4 

3.0 (1.3) 

2, 2, 3, 4, 5 

1.7 (1.0) 

1, 1, 1, 2, 4 

1.7 (1.1) 

1, 1, 1, 2, 4 

1.8   (1.2) 

1,  1,  1,  2,  4 

3.2 (1. 3) 

2, 2, 3, 4, 6 

1.6 (0.9) 

1, 1, 1, 2, 3 

1.7 (1.1) 

1, 1, 1, 2 4 

3 1.1 (0.4) 

1, 1, 1, 1, 2 

2.0 (0.7) 

1, 2, 2, 2, 3 

1.1 (0.4) 

1, 1, 1, 1, 2 

1.1 (0.4) 

1, 1, 1, 1, 2 

1.1   (0.4) 

1,  1,  1,  1,  2 

2.3 (0.6) 

2, 2, 2, 3, 3 

1.1 (0.4) 

1, 1, 1, 1, 2 

1.1 (0.4) 

1, 1, 1, 1, 2 

δ =2.00 

0 11.3  (12.3) 

1, 3, 7, 15, 34 

8.9 (4.9) 

3, 6, 8, 11, 18, 

8.4 (9.1) 

1, 2, 5, 11, 26 

10.8 (12.0) 

1, 3, 7, 14, 34 

11.5  (11.9) 

1,  3,  8, 15,  35 

9.8 (4.6) 

3, 7, 9, 12, 18 

7.8 (7.7) 

1, 2, 5, 10, 23 

10.6 (11.1) 

1, 3, 7, 14, 32 

0.25 10.3  (11.0) 

1, 3, 7, 14, 32 

8.6 (4.6) 

2, 5, 8, 11, 17 

7.6 (8.1) 

1, 2, 5, 10, 23 

9.9 (10.9) 

1, 3, 6, 13, 31 

10.8 (10.9) 

1,  3,  7, 15,  32 

9.5 (4.5) 

3, 6, 9, 12, 18 

7.3 (7.0) 

1, 2, 5, 10, 21 

9.8 (10.2) 

1, 3, 6, 13, 20 

0.5 8.5   (9.0) 

1, 3, 6, 11, 25 

7.7 (4.2) 

2, 5, 7, 10, 16 

6.4 (6.7) 

1, 2, 4, 8, 19 

8.2 (8.9) 

1, 2, 5, 11, 25 

8.6  (8.5) 

1, 3,  6, 11,  25 

8.5 (4.0) 

3, 6, 8, 11, 16 

6.1 (5.7) 

1, 2, 4, 8, 17 

7.98 (8.1) 

1, 2, 5, 11, 24 

0.75 6.5   (6.4) 

1, 2, 4, 9, 19 

6.7 (3.6) 

2, 4, 6, 9, 13 

5.1 (4.9) 

1, 2, 3, 7, 14 

6.3 (6.6) 

1, 2, 4, 8, 19 

6.6   (6.5) 

1,  2,  5,  9,  19 

7.3 (3.4) 

2, 5, 7, 9, 14 

4.8 (4.3) 

1, 2, 3, 6, 13 

6.0 (5.9) 

1, 2, 4, 8, 18 

1.0 4.9  (4.8) 

1, 2, 3, 7, 14 

5.7 (2.9) 

2, 4, 5, 7, 11 

3.9 (3.6) 

1, 2, 3, 5, 11 

4.7 (4.7) 

1, 2, 3, 6, 14 

4.8   (4.5) 

1,  2,  3,  6, 14 

6.2 (2.9) 

2, 4, 6, 8, 11 

3.7 (3.2) 

1, 2, 3, 5, 10 

4.5 (4.2) 

1, 2, 3, 6, 13 

1.5 2.9  (2.5) 

1, 1, 2, 4, 8 

4.1 (2.0) 

2, 2, 4, 5, 8 

2.5 (1.9) 

1, 1, 2, 3, 6 

2.7 (2.4) 

1, 1, 2, 3, 7 

2.9   (2.5) 

1, 1, 2,  4, 8 

4.5 (2.0) 

2, 3, 4, 6, 8 

2.4 (1.7) 

1, 1, 2, 3, 6 

2.7 (2.1) 

1, 1, 2, 3, 7 

2 1.9   (1.4) 

1,  1,  1,  2,  5 

3.1 (1.3) 

2, 2, 3, 4, 6 

1.7 (1.1) 

1, 1, 1, 2 4 

1.7 (1.1) 

1, 1, 1, 2, 4, 16 

1.9   (1.3) 

1, 1, 1,  2, 4 

3.4 (1.4) 

2, 2, 3, 4, 6 

1.7 (1.0) 

1, 1, 1, 2 ,4 

1.8 (1.2) 

1, 1, 1, 2, 4 

3 1.2  (0.5) 

1,  1,  1,  1,  2 

2.1 (0.8) 

1, 2, 2, 2, 4 

1.2 (0.4) 

1, 1, 1, 1, 2 

1.1 (0.4) 

1, 1, 1, 1, 2 

1.2   (0.5) 

1, 1, 1, 1, 2 

2.4 (0.7) 

2, 2, 2, 3, 4 

1.2 (0.4) 

1, 1, 1, 1, 2 

1.2 (0.4) 

1, 1, 1, 1, 2 
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Table-4.  Performance comparisons between the Shewhart type and CUSUM type Lepage charts for the Cauchy (θ,δ) distribution with ARL0 = 500. 

 

θ 

m=50, n=5 

 

m=100, n=5 

 

Shewhart Lepage Chart Proposed CUSUM Lepage chart Shewhart Lepage Chart Proposed CUSUM Lepage chart 

k=0 k=3 k=6 k=0 k=3 k=6 

δ =1.00 
0 468.9 (725.6) 

13, 76, 212, 536, 1823 

513.8 (993.4) 

20, 58, 144, 427, 2605 

487.7 (769.5) 

10, 72, 211, 555, 1974 

491.2 (759.0) 

12, 79, 225, 565, 1890 

502.1 (663.9) 

18, 106, 277, 626, 1780 

493.9 (859.8) 

34, 88, 192, 474, 2038 

478.8 (651.1) 

14, 93, 255, 591, 1705 

504.2 (676.7) 

17, 104, 272, 625, 

1784 

0.25 468.3 (745.4) 

11, 69, 203, 529,1869 

426.5 (900.7) 

17, 46, 113, 331, 2088 

476.4 (767.6) 

9, 66, 197, 531, 1921 

472.4 (751.8) 

10, 67, 198, 534, 1899 

464.0 (642.2) 

16, 90, 241, 570, 1681 

389.8 (741.8) 

27, 67, 145, 350, 1601 

441.5 (630.1) 

11, 80, 220, 538, 1611 

451.5 (644.1) 

14, 86, 229, 547, 1650 

0.5 396.0 (690.8) 

7,47, 149, 423, 1649 

272.9 (690.5) 

11, 29, 64, 183, 1198 

408.8 (730.2) 

5, 41, 145, 431, 1755 

429.1 (756.2) 

7, 48, 154, 453, 1835 

379.4 (603.1) 

10, 60, 172, 438,1445 

207.1 (489.6) 

17, 38, 73, 167, 765 

346.8 (564.9) 

6, 49, 148, 402, 1351 

367.3 (584.3) 

9, 58, 164, 420, 1405 

0.75 343.6 (691.8) 

4,29,98, 327, 1547 

138.4 (456.9) 

7, 17, 34, 82, 493 

346.98 (726.4) 

2, 21, 84, 312, 1611 

340.1 (683.3) 

4, 27, 97, 324, 1489 

274.4 (507.0) 

6, 35, 106, 287, 1093 

86.2 (246.8) 

10, 22, 38, 72, 258 

229.9 (453.2) 

3, 24, 78, 233, 956 

265.0 (493.9) 

5, 33, 101, 281, 1030 

1.0 270.1 (641.5) 

3,16, 58,211, 1257 

60.7 (235.6) 

5, 11, 20, 41, 180 

258.6 (657.0) 

2, 10, 42, 142, 1235 

273.1 (643.5) 

2, 15, 56, 214, 1295 

173.3 (377.5) 

3, 19, 57, 164, 719 

35.8 (80.5) 

7, 14, 22, 37, 96 

140.9 (351.2) 

2, 11, 37, 118, 598 

173.9 (396.3) 

2, 17, 53, 161, 721 

1.5 149.2 (500.4) 

1,5, 18, 73, 670 

15.2 (27.6) 

3, 6, 9, 16, 42 

121.7 (473.6) 

1, 3, 10, 41, 526 

139.9 (470.4) 

1, 5, 16, 67, 646 

66.98 (214.7) 

1, 6, 17, 50, 257 

12.99 (13.3) 

4, 7, 10, 15, 30 

39.6 (162.3) 

1, 3, 8, 24, 146 

62.6 (198.4) 

1, 5, 14, 46, 249 

2 76.2 (347.2) 

1,2, 7, 25, 283 

7.8 (8.2) 

2, 4, 6, 9, 19 

52.5 (324.7) 

1, 2, 4, 10, 122 

72.5 (359.4) 

1, 2, 6, 21, 243 

26.5 (116.2) 

1,2, 6, 17, 93 

7.3 (4.3) 

3, 5, 6, 9, 15 

10.7 (62.7) 

1, 2, 3, 7, 26 

23.3 (127.4) 

1, 2, 5, 13, 77 

3 20.9 (179.4) 

1, 1, 2, 5, 42 

4.1 (2.5) 

2, 3, 4, 5, 8 

8.96 (121.2) 

1, 1, 2, 3, 9 

16.8 (146.4) 

1, 1, 2, 4, 32 

5.0 (22.3) 

1, 1, 2, 4, 13 

4.1 (1.7) 

2, 3, 4, 5, 7 

2.4 (7.1) 

1, 1, 2, 2, 5 

3.9 (18.9) 

1, 1, 2, 3, 9 

δ =1.25 
0 248.9 (440.7) 

7, 40, 108, 271, 948 

255.5 (657.1) 

13, 32, 67, 173, 1080 

250.5 (449.2) 

5, 35, 102, 270, 940 

245.7 (426.2) 

6, 38, 108, 270, 940 

238.9 (344.3) 

9, 51, 128, 293, 810 

192.7 (421.2) 

19, 43, 82, 174, 664 

216.8 (315.6) 

6, 42, 114, 263, 773 

239.2 (337.2) 

8, 49, 129, 294, 836 

0.25 232.9 (417.97) 

6, 36, 101, 258, 879 

231.3 (639.1) 

11, 28, 60, 153, 989 

240.2 (427.7) 

4, 32, 94, 248, 911 

235.6 (424.2) 

5, 35, 99, 257, 894 

221.8 (318.5) 

8, 45, 117, 272, 775 

161.7 (370.4) 

16, 36, 68, 142, 566 

195.6 (296.4) 

4, 36, 99, 236, 704 

216.6 (318.3) 

7, 43, 116, 265, 741 

0.5 205.2 (392.9) 

5, 27, 80, 216, 819 

164.4 (513.5) 

8, 20, 41, 99, 595 

214.5 (439.7) 

2, 22, 73, 215, 877 

211.9 (412.2) 

4, 26, 79, 219, 846 

185.4 (290.1) 

6, 34, 91, 217, 670 

107.1 (289.97) 

12, 26, 46, 90, 330 

160.2 (264.2) 

3, 25, 73, 184, 600 

179.5 (282.4) 

5, 32, 87, 213, 643 

0.75 178.9 (397.5) 

3, 18, 57, 167, 738 

95.6 (336.6) 

6, 14, 26, 58, 320 

175.3 (422.6) 

2, 14, 46, 151, 745 

179.6 (393.2) 

2, 17, 56, 170, 739 

135.8 (234.9) 

4, 22, 60, 152, 516 

53.2 (119.3) 

9, 18, 29, 52, 151 

114.4 (217.7) 

2, 25, 44, 119, 454 

135.9 (254.6) 

3, 20, 57, 148, 525 

1.0 148.1 (383.4) 

2,11,37, 117, 620 

53.1 (233.5) 

5, 10, 18, 34, 142 

136.9 (391.6) 

2, 8, 27, 98, 593 

144.96 (371.4) 

2, 11, 36, 118, 613 

97.4 (196.1) 

3, 14, 38, 99, 385 

30.2 (77.7) 

6, 12, 19, 31, 76 

71.9 (169.1) 

2, 8, 24, 68, 288 

93.0 (189.4) 

2, 12, 35, 94, 368 

1.5 81.98 (271.8) 

1, 5, 15, 50, 353 

16.4 (58.2) 

3, 6, 9, 15, 41 

72.6 (310.40 

1, 3, 9, 32, 277 

83.7 (312.8) 

1, 4, 13, 47, 332 

42.9 (122.1) 

1, 5, 14, 37, 159 

12.5 (10.5) 

4, 7, 10, 15, 28 

25.7 (86.5) 

1, 3, 8, 20, 93 

40.4 (123.2) 

1, 4, 12, 34, 151 

2 46.6 (232.2) 

1, 2, 6, 20, 150 

8.1 (9.9) 

2, 4, 6, 9, 19 

31.2 (195.8) 

1, 2, 4, 10, 86 

45.8 (233.1) 

1, 2, 6, 18, 162 

18.7 (67.2) 

1, 3, 6, 15, 65 

7.6 (4.2) 

3, 5, 7, 9, 15 

8.8 (34.3) 

1, 2, 4, 8, 26 

16.3 (55.8) 

1, 2, 5, 13, 58 

3 14.1 (106.2) 

1, 1, 2, 5, 33 

4.3 (2.6) 

2, 3, 4, 5, 8 

6.95 (74.8) 

1, 1, 2, 3, 10 

14.1 (130.1) 

1, 1, 2, 4, 26 

4.3 (12.4) 

1, 1, 2, 4, 13 

4.3 (1.8) 

2, 3, 4, 5, 8 

2.5 (4.4) 

1, 1, 2, 3, 6 

3.9 (36.8) 

1, 1, 2, 3, 10 

δ =1.50 
0 138.2 (243.0) 

4, 24, 65, 155, 493 

117.0 (393.6) 

9, 20, 36, 75, 372 

134.9 (273.6) 

2, 19, 55, 144, 502 

138.9 (251.2) 

4, 23, 63, 153, 514 

131.3 (175.6) 

6, 29, 75, 166, 444 

72.9 (149.2) 

13, 25, 42, 73, 212 

108.9 (156.7) 

3, 22, 58, 135, 375 

127.2 (175.1) 

4, 27, 71, 159, 438 

0.25 133.5 (248.7) 

4, 22, 59, 145, 497 

103.7 (341.7) 

8, 18, 33, 71, 341 

128.8 (250.6) 

2, 17, 51, 135, 493 

133.1 (245.9) 

3, 21, 58, 146, 495 

122.6 (167.4) 

5, 27, 68, 154, 417 

66.7 (156.3) 

11, 23, 38, 66, 185 

103.3 (153.6) 

2, 19, 52, 125, 367 

120.2 (172.5) 

4, 25, 66, 147, 417 
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0.5 122.7 (245.4) 

3,18, 50,127, 463 

79.5 (275.4) 

7, 15, 27, 54, 251 

115.7 (253.4) 

2, 14, 42, 116, 447 

120.6 (237.3) 

3, 17, 49, 127, 464 

105.9 (156.9) 

4, 21, 56, 128, 372 

48.6 (91.7) 

10, 19, 30, 51, 133 

86.6 (142.9) 

2, 15, 41, 102, 315 

101.9 (155.2) 

3, 20, 53, 122, 357 

0.75 103.8 (224.6) 

2, 13, 37, 104, 406 

58.0 (240.9) 

5, 12, 20, 39, 158 

96.8 (237.6) 

2, 9, 29, 87, 396 

103.2 (230.6) 

2, 12, 37, 103, 403 

84.4 (134.4) 

3, 16,41, 99, 304 

33.9 (58.5) 

7, 14, 22, 37, 87 

64.3 (110.3) 

2, 10, 29, 71, 246 

78.9 (131.4) 

2, 13, 37, 91, 291 

1.0 84.1 (218.2) 

2, 9, 26, 75, 332 

36.1 (161.5) 

4, 9, 15, 27, 93 

74.6 (209.7) 

2, 6, 19, 59, 307 

84.8 (209.5) 

2, 9, 26, 78, 341 

61.3 (116.2) 

2, 10, 28, 66, 225 

22.5 (48.8) 

6, 11, 16, 25, 54 

44.8 (93.6) 

2, 6, 18, 46, 174 

59.96 (116.5) 

2, 9, 25, 64, 221 

1.5 51.3 (155.9) 

1, 4, 12, 37, 206 

14.8 (56.1) 

3, 6, 9, 14, 35 

43.4 (171.1) 

1, 3, 8, 24, 165 

52.9 (179.8) 

1, 4, 11, 37, 214 

30.0 (65.2) 

1, 5, 12, 30, 112 

11.9 (9.2) 

4, 7, 10, 14, 26 

18.4 (51.6) 

1, 3, 7, 17, 66 

28.2 (77.0) 

1, 4, 11, 28, 104 

2 31.3 (142.8) 

1, 2, 6, 18, 112 

8.1 (9.6) 

2, 4, 6, 9, 19 

20.2 (124.5) 

1, 2, 4, 10, 61 

30.8 (144.5) 

1, 2, 5, 16, 107 

14.5 (38.1) 

1, 3, 6, 14, 52 

7.7 (4.4) 

3, 5, 7, 9, 15 

7.6 (20.1) 

1, 2, 4, 8, 23 

12.9 (36.2) 

1, 2, 5, 12, 45 

3 12.1 (98.8) 

1, 1, 2, 5, 29 

4.4 (2.7) 

2, 3, 4, 5, 9 

6.5 (86.1) 

1, 1, 2, 3, 11 

10.3 (79.99) 

1, 1, 2, 5, 24 

4.4 (10.3) 

1,1,2, 5, 13 

4.5 (1.9) 

2, 3, 4, 5, 8 

2.6 (3.7) 

1, 1, 2, 3, 6 

3.7 (8.8) 

1, 1, 2, 4, 10 

δ =1.75 
0 85.6 (151.3) 

3, 15, 41, 98, 304 

52.7 (182.7) 

6, 14, 23, 42, 140 

76.97 (151.8) 

2, 12, 33, 84, 290 

86.2 (155.2) 

2, 15, 40, 97, 313 

81.1 (104.2) 

4,19, 47, 104, 272 

32.2 (58.4) 

9, 17, 27, 42, 94 

63.3 (96.8) 

2, 13, 34, 79, 220 

79.8 (109.4) 

3, 18, 45, 99, 271 

0.25 83.6 (149.9) 

3, 15, 39, 94, 306 

50.97 (190.6) 

6, 13, 22, 40, 139 

75.7 (154.6) 

2, 11, 31, 80, 287 

82.8 (148.9) 

2, 14, 38, 92, 299 

78.6 (105.9) 

4, 18, 45, 98, 262 

34.4 (43.7) 

9, 16, 25, 39, 84 

60.3 (89.7) 

2, 12, 31, 73, 212 

75.9 (109.1) 

2, 16, 42, 94, 258 

0.5 79.6 (155.9) 

3, 13, 34, 84, 299 

43.5 (181.5) 

6, 12, 19, 35, 110 

69.0 (148.5) 

2, 9, 26, 70, 268 

76.1 (143.5) 

2, 12, 33, 83, 281 

68.9 (95.4) 

3, 15, 38, 85, 233 

29.4 (36.8) 

7, 15, 22, 34, 71 

52.2 (82.1) 

2, 10, 26, 61, 190 

64.4 (88.9) 

2, 13, 35, 80, 223 

0.75 68.4 (140.5) 

2, 10, 27, 71, 257 

34.5 (150.2) 

5, 10, 16, 28, 84 

58.8 (143.3) 

2, 7, 20, 56, 230 

67.9 (142.7) 

2, 9, 27, 69, 261 

56.2 (81.9) 

2, 12, 30, 68, 197 

23.3 (27.8) 

6, 12, 18, 27, 55 

40.8 (71.7) 

2, 7, 19, 46, 149 

54.8 (85.7) 

2, 10, 27, 64, 197 

1.0 57.6 (143.1) 

2, 7,20, 55, 216 

24.7 (101.7) 

4, 8, 13, 22, 61 

46.6 (117.9) 

2, 5, 14, 41, 188 

57.6 (136.3) 

2, 7, 20, 55, 224 

43.8 (70.4) 

2, 9, 22, 51, 154 

18.1 (21.9) 

5, 10, 15, 22, 40 

28.8 (52.7) 

2, 5, 13, 31, 104 

41.4 (71.5) 

2, 7, 20, 47, 153 

1.5 38.2 (112.4) 

1, 4, 11, 31, 149 

13.5 (52.4) 

3, 6, 9, 14, 30 

29.0 (102.5) 

1, 3, 7, 20, 108 

35.1 (101.2) 

1, 4, 10, 28, 138 

23.5 (41.7) 

1, 5, 11, 26, 83 

11.1 (7.3) 

4, 7, 10, 13, 23 

14.2 (30.4) 

1, 3, 6, 15, 49 

22.1 (43.6) 

1, 4, 10, 23, 81 

2 22.7 (90.4) 

1, 2, 6, 16, 81 

8.1 (11.3) 

2, 4, 6, 9, 18 

15.5 (75.5) 

1, 2, 4, 9, 49 

21.9 (89.1) 

1, 2, 5, 15, 80 

12.9 (26.1) 

1, 3, 6, 13, 45 

7.6 (4.0) 

3, 5, 7, 9, 15 

7.1 (15.7) 

1, 2, 4, 7, 21 

11.4 (24.3) 

1, 2, 5, 12, 39 

3 8.9 (50.4) 

1, 1, 2, 6, 24 

4.6 (3.3) 

2, 3, 4, 6, 9 

5.5 (53.7) 

1, 1, 2, 4, 11 

8.8 (71.97) 

1, 1, 2, 5, 21 

4.3 (7.9) 

1, 1, 2, 5, 13 

4.6 (1.99) 

2, 3, 4, 6, 8 

2.8 (3.3) 

1, 1, 2, 3, 7 

3.7 (6.5) 

1, 1, 2, 4, 11 

δ =2.00 
0 57.2 (94.8) 

2,11, 29, 66, 204 

30.7 (115.4) 

5, 11, 17, 29, 75 

49.3 (92.8) 

2, 8, 22, 53, 183 

57.8 (100.1) 

2, 10, 28, 67, 206 

56.6 (70.8) 

3, 14, 33, 72, 188 

24.5 (25.6) 

7, 13, 20, 29, 56 

38.96 (53.7) 

2, 8, 21, 48, 134 

52.8 (68.0) 

2, 12, 31, 68, 177 

0.25 56.6 (97.7) 

2, 11, 28, 65, 198 

28.2 (91.7) 

5, 10, 17, 28, 70 

47.95 (92.0) 

2, 7, 20, 50, 178 

56.7 (105.1) 

2, 10, 27, 64, 199 

52.98 (68.1) 

3, 12, 31, 68, 173 

23.4 (24.2) 

7, 13, 19, 28, 52 

37.7 (52.7) 

2, 8, 21, 46, 131 

50.4 (72.3) 

2, 11, 29, 63, 172 

0.5 53.6 (98.1) 

2, 10, 25, 60, 193 

25.4 (65.6) 

5, 10, 15, 25, 65 

44.5 (98.7) 

2, 6, 18, 45, 167 

52.4 (96.4) 

2, 9, 24, 58, 196 

48.5 (63.3) 

2, 11, 27, 61, 165 

21.1 (18.4) 

6, 12, 17, 25, 47 

33.2 (49.7) 

2, 7, 17, 40, 116 

45.6 (61.9) 

2, 10, 25, 57, 156 

0.75 47.6 (92.3) 

2, 8, 21, 51, 174 

21.3 (62.95) 

4, 9, 13, 22, 53 

38.2 (84.7) 

2, 5, 15, 38, 140 

45.6 (82.2) 

2, 7, 20, 49, 169 

40.9 (57.2) 

2, 9, 22, 50, 141 

18.3 (16.2) 

6, 10, 15, 22, 41 

27.6 (46.3) 

2, 6, 14, 32, 97 

38.2 (56.4) 

2, 8, 21, 46, 132 

1.0 40.3 (86.7) 

2, 6, 16, 41, 149 

17.99 (62.98) 

4, 7, 11, 18, 43 

32.4 (80.7) 

2, 4, 11, 30, 128 

40.99 (94.4) 

1, 6, 16, 40, 152 

33.3 (51.2) 

2, 7, 17, 40, 115 

15.0 (10.4) 

5, 9, 13, 18, 33 

20.98 (34.8) 

2, 4, 10, 24, 74 

31.1 (50.8) 

2, 6, 16, 37, 110 

1.5 28.6 (73.9) 

1, 4, 10, 26, 109 

11.2 (22.9) 

3, 6, 8, 12, 26 

20.4 (56.6) 

1, 2, 6, 16, 79 

27.4 (75.4) 

1, 3, 9, 24, 104 

19.89 (33.2) 

1, 4, 10, 23, 69 

9.2 (6.2) 

4, 6, 9, 13, 21 

11.6 (19.5) 

1, 3, 6, 13, 39 

17.9 (33.8) 

1, 3, 9, 20, 62 

2 18.2 (70.0) 

1, 2, 6, 14, 66 

7.7 (9.6) 

2, 4, 6, 9, 17 

12.1 (49.5) 

1, 2, 4, 9, 38 

16.8 (61.1) 

1, 2, 5, 13, 61 

11.5 (19.8) 

1, 3, 6, 13, 39 

7.5 (3.9) 

3, 5, 7, 9, 15 

6.4 (9.9) 

1, 2, 4, 7, 20 

10.3 (22.7) 

1, 2, 5, 11, 35 

3 7.6 (28.1) 

1,1, 3, 6, 24 

4.7 (2.8) 

2, 3, 4, 6, 9 

5.3 (43.8) 

1, 1, 2, 4, 11 

6.9 (34.0) 

1, 1, 2, 5, 20 

4.6 (7.7) 

1, 1, 3, 5, 14 

4.8 (2.1) 

2, 3, 4, 6, 9 

2.8 (2.9) 

1, 1, 2, 3, 7 

3.8 (5.9) 

1, 1, 2, 4, 11 

 


