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Abstract

In this paper I present a new single factor model for assets return observed in

discrete time and its latent volatility with a common “market factor”. This model

attempts to unify the concept of feedback effect and skewness in return distribu-

tion. Further, it generalizes existing stochastic volatility model with constant feedback

to a framework with time varying feedback. As an immediate consequence dynamic

skewness and leverage effect follows. However, the dynamic structure violates weak-

stationarity assumption usually considered for the heteroskedastic models for returns

and hence the concept of bounded stationarity is introduced to address the issue of non-

stationarity. The single factor model also helps to reduce the number of parameters

to be estimated compared to existing SV models with separate feedback and skewness

parameters. A characterization of the error distributions for returns and volatility is

provided on the basis of existence of conditional moments. Finally, an application

of the model has been explained with Normal error and half Normal market factor

distribution.
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1 Introduction

Research in financial econometrics has seen a surge in the area of time-varying volatility mod-

els for asset returns over last three decades. Stochastic volatility (SV) model (Taylor 1982)

has been one of the key instruments to address such an issue. In addition SV model explains

some interesting aspects of asset returns observed empirically and known as “stylized facts”.

Some of the important stylized facts are volatility clustering indicating similar volatility

periods clustering together and the negative relation between the return and its volatility

divulging their movement in opposite direction. The work of Taylor (1982) models time

varying volatility of financial returns as a latent auto-regressive process to account for the

volatility clustering. Since then multitude of SV models have been developed to explain

different stylized facts about asset returns. A comprehensive review of the SV models can be

obtained from the works of Shephard & Andersen (2009) and Chib, Omori & Asai (2009).

Recent works in the SV literature emphasizes on three important aspects of such models

for asset returns observed in discrete time viz. the negative correlation between current

asset return and its future volatility (or leverage effect), return skewness and the correlation

between current volatility and future returns (or the feedback effect). SV model and variants

of the same has been developed to explain the time varying volatility of asset return and some

of the three aspects mentioned above. Renault (2009) provides a comprehensive account

of leverage, feedback and points out towards the possibility of a connection between the

feedback effect and return skewness. However, no work has been done so far to explain

the connection between feedback effect and return skewness along with volatility clustering

and leverage for discrete time asset returns to the best of the knowledge of the author. In

this paper, I develop a parsimonious generalized SV model to explain the relation between

conditional feedback and return skewness in presence of leverage and extend it to an SV

model with time dependent feedback, skewness and leverage parameters.

The time series data on asset returns provides evidence of correlation between asset return

and its volatility (Nelson 1991) and skewness in asset returns (Harvey & Siddique 1999).

The fact that a decline in current price would lead to increase in future volatility, could be
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attributed to changes in financial leverage (Nelson 1991) and such a correlation is called the

leverage effect. On the other hand, the negative correlation between current volatility and

future return is known as the feedback effect. Feedback effect may be attributed to the fact

that an anticipated increase in volatility results in immediate price fall (French, Schwert

& Stambaugh 1987). Bollerslev, Litvinova & Tauchen (2006) shows that a stronger signal

is reflected through the contemporaneous correlation between asset return and its volatility

and concludes in favor of the contemporaneous correlation as a measure of volatility feedback

effect. Jacquier, Polson & Rossi (2004) used such an SV model to develop a Monte Carlo

Markov Chain method for estimation of model parameters. However, Renault (2009) points

out an alternative explanation to the negative contemporaneous correlation using the return

skewness. The intuition behind such possibility could be justified by the following argument.

The magnitude of volatility increase due to price fall is much higher than the magnitude by

which volatility decreases in case of price increase, which is known as volatility asymmetry.

Thus the conditional volatility for negative returns is more compared to the same for positive

returns. This fact leads to the skewness in the innovation distribution. Tsiotas (2011) and

references therein provide an account of SV models developed so far with leverage and skewed

shocks. Recently, Feunou & Tédongap (2012) developed an affine SV model (denoted as SVS

model) with standardized inverse Gaussian return shocks and autoregressive Gamma latent

factors which accommodates both the feedback effect (mentioned as leverage by the authors)

and the conditional skewness in asset returns. However, the SVS model does not provide

explicit form of the volatility process and hence the intensity of volatility clustering is difficult

to observe directly.

In this paper I propose a parsimonious representation of such an interlocked explication

of feedback effect and skewness in presence of leverage effect. Both of them could be looked

upon as a resultant of the influence of a common positive stochastic factor to the symmetric

return and volatility shocks. A financial justification of the presence of such a stochastic

factor could be in assuming the presence of a positive “market factor” which impacts both

return and volatility with different magnitudes. Direction of market factor impacts could be
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similar or opposite. This mechanism generates perturbation to symmetric random shocks

by a positive random variable and generates asymmetry in returns whereas the common

factor generates the feedback effect. Further, Bollerslev, Sizova & Tauchen (2012) provides

empirical evidence of the dynamic nature of the correlation between return and volatility.

On the other hand Harvey & Siddique (1999) and recently Boyer, Mitton & Vorkink (2010)

provide evidences of time dependent conditional return skewness in asset returns.

Based on the above findings I assume the weights of the market factor on return and

volatility to be time varying so that the feedback effect and conditional skewness are dynamic.

Individual impact of the stochastic market factor on return and volatility are measured by

the corresponding time dependent coefficients which will be referred to as impact parameters

here onwards. The underlying reason of different directions and magnitudes of the time

varying conditional skewness and the feedback effect could be then comprehended in terms

of the impact parameters.

The main complexity of this proposed model is that it violates weak-stationarity condition

of the volatility process. Weak stationarity is crucial to a stochastic process as it restricts

the process to increase indefinitely in expectation with time. In this paper I introduce

the concept of bounded stationarity in terms of 1st and 2nd order moments of a stochastic

process to relax the existing weak-stationarity condition yet ensuring that the process does

not explode. I also provide here a characterization of the auto-regressive process of order

one, which is most commonly used to describe volatility process in SV models, in the light

of bounded stationarity in this paper.

The proposed model is developed under general distributions for return, volatility and

the market factor. Many of the existing SV models has been shown to be particular cases

of this generalized SV model. An immediate characterization of the plausible distributions

for return, volatility and market factor has been given based on the existence of return mo-

ments and the feedback effect. Further, I provide explanation of the volatility asymmetry

in terms of the market factor influence assuming the usual Gaussian framework for both

return and volatility along with a standard half normal market factor. Such affine com-
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bination of Normal and Half-Normal distribution results in a variant of a general class of

distributions containing standard Normal known as skew-normal distribution (Azzalini &

Dalla Valle 1996). Since the proposed model uses only the conditional skewness parameters

and feedback results in from the single factor model structure, the number of parameters

to be estimated is reduced compared to the existing SV models (dynamic as well as static)

which use separate parameters for feedback and skewness. Moreover, in order to extend

the existing SV models with separate parameters for conditional skewness and feedback to

a dynamic framework,large number of parameters will be required compared to number of

available observations resulting into a highly saturated SV model. The model developed in

this paper becomes advantageous in such a case as the number of parameters to be estimated

is significantly less compared to the above mentioned case.

The paper is organized as follows. In section (2). we introduce the general framework

for joint model with time dependent impact parameters and show some of the existing and

well known SV models as special cases of the proposed joint model. The concept of bounded

stationarity is introduced in this section to tackle non-stationarity in dynamic feedback SV

model. Section (3) presents an example of generalized SVDF model with half-normal and

Gaussian distributions. The expression for the dynamic feedback and leverage are presented

here and necessary and sufficient conditions for negative feedback has been discussed. Section

(4) contains discussion on the model and its application and some direction for the future

work.

2 Dynamic Feedback SV Model with Common Market

Factor

Let Pt be the daily price of an asset and log Pt

Pt−1
be the log return. The time series of mean-

corrected daily log returns is denoted by yt and the underlying latent volatilities by θt. Let

us start with the SV model proposed by Jacquier, Polson & Rossi (1994) which is given as
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follows:

yt = e
θt
2 εt, (2.1)

θt = α+ φ(θt−1 − α) + ηt, t = 1, ..., T (2.2)

εt and ηt being independent sequences of independently and identically distributed (iid) ran-

dom shocks (or innovations) with both the means 0 and variances 1 and σ2 respectively. φ

is the volatility clustering parameter which reflects the stylized fact that volatility pattern

(high or low) cluster together. Subsequently SV models with contemporaneous correlation

(ρ) between εt and ηt has been developed by Jacquier et al. (2004). Such SV model with the

feedback effect ρ relates the changes in volatility to the sign and magnitude of price changes

which helps in pricing the options more accurately.

In this paper, I consider a new SV model with independent symmetric random shocks

εt and ηt and a general positive common factor or “market factor”, say γt, which impacts

the return and its latent volatility at each time point. However, such impacts on return and

its volatility may be different in magnitude and direction and may vary over time (Boyer

et al. 2010). Let λy,t ∈ R and λθ,t ∈ R denote the dynamic impacts of the market factor

on the return and its latent volatility respectively. Thus the new SV model with a common

dynamic market factor is given as

yt = µy,t + e
θt
2 (λy,tγt + εt) (2.3)

θt = α+ φ(θt−1 − α) + µθ,t + (λθ,tγt + ηt) (2.4)

where yt, θt are same as in equations (2.1)-(2.2) and {γt} is a sequence of iid positive random

variables. µy,t and µθ,t are so selected that E[yt | Ft−1] = 0 and E[θt | Ft−1] = α+φ(θt−α)

preserving mean reversion of the returns and the memory effect in volatility respectively.

Further εt and ηt are two sequences of symmetric random variables independent to each

other contemporaneously as well as inter-temporally.

The affine combination of positive market factor with symmetric innovation results in a

skewed family of distributions. The market factor impact parameters determine the amount
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and direction of conditional skewness in the corresponding process and hence will be in-

terchangeably called as skewness parameters and impact parameters here onwards. The

presence of common market factor in both return and volatility induces the correlation or

the feedback effect. The time-dependent impact parameters causes the feedback to be dy-

namic. It may be remarked here that considering λy,t = λy and λθ,t = λθ, constant feedback

model can be obtained. Clearly the volatility asymmetry can now be interpreted in terms of

the market factor impacts which has been discussed in detail in subsection 2.3. Henceforth

we shall denote the proposed stochastic volatility model with dynamic feedback by SVDF

model.

The SVDF model postulated above in equations (2.3)-(2.4) describes a robust class of

parametric SV models. Different distributions has been used in SV model to capture the

skewness and kurtosis in return. Such models can be obtained as special cases of the proposed

structure of the innovations in SVDF model. Some of the significant ones are described as

below:

1. Let λy,t = λθ,t = 0, εt ∼ N(0, 1) and ηt ∼ N(0, σ2) be independent processes to obtain

the usual SV model with Gaussian errors (Jacquier et al. 1994)

2. Let λy,t = λθ,t = 0, εt ∼ tν , ηt ∼ N(0, σ2) and they are independent which leads to the

SV model with t-errors (SVt) in return

3. Let λθ,t = 0 and γt be standard half-normal variate. Further, let εt ∼ N(0, 1) and

independent of ηt ∼ N(0, σ2) and both εt and ηt are independent of γt which results

in the SV model with returns distributed as a variant of Skew-Normal distribution

(Tsiotas 2011).

4. Set λθ,t = 0, γt as half-tν variate. In addition εt ∼ tν and ηt ∼ N(0, σ2) and are

independent of each other as well as γt. This leads to the SV model with Skew-t

returns.

5. Let λθ,t = 0 and γt be distributed as Generalized Inverse Gaussian distribution. Fur-

ther, let εt =
√
γtε

∗
t , where ε∗t are NID(0, 1) variates independent of γt and ηt with
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ηt ∼ N(0, σ2) to obtain the SV model with generalized hyperbolic Skew-t returns (Aas

& Haff 2006).

However, in what follows we assume the independence between γt, εt and ηt, ∀t = 1, 2, . . ..

The assumption of dynamic nature of impact parameters λy,t and λθ,t in the above model

immediately results in a serious issue of violating the weak stationarity of the auto-regressive

structure of the volatility process as stated in (2.4), which in turn may lead the process to

explode as its future variance may increases indefinitely with time lag. To avoid this issue and

yet to incorporate the dynamic nature of market factor impacts I first introduce the concept

of bounded stationarity in the following subsection and describe some characteristics of θt

with respect to bounded stationarity.

2.1 Bounded Stationarity For Volatility Process

The bounded stationarity of a discrete time stochastic process is defined as follows.

Bounded Stationarity: Let Xt be a discrete time stochastic process such that its 1st and

2nd moments exist. The process is defined to be bounded stationary if E[Xt] < M and

Cov(Xt, Xt−k) < V ; M and V being finite real numbers and k is any integer.

Taking k = 0 in the above definition we get the condition V (yt) < V on the variance for

bounded stationarity.

Remark: Notice that, if the 1st and 2nd order moments of a bounded stationary time series

are constant, then the series is weak stationary. Hence the weak stationarity is a particular

case of bounded stationarity. Further suppose the 1st and 2nd moments of a locally weak

stationary series, viz. yτ1 , yτ2 , . . . , yτT , τ ∈ I(an index set), be given by µτ and σ2
τ . If µτ and

σ2
τ are finite for all τ ∈ I, then setting M = sup

τ∈I
µτ and V = sup

τ∈I
στ we observe that a locally

weak stationary series is bounded stationary. Strict stationarity is readily observed to be a

special case of bounded stationarity.

Based on the above definition of bounded stationarity, the conditions required for bounded

stationarity of the volatility process in (2.4) is derived in the following theorem.
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Theorem 2.1 Consider a sequence of independent positive random variables γt and define

an auto-regressive process of the form

θt = α+ φ(θt−1 − α) + at, (2.5)

where at = λtγt+ηt, λt ∈ R and ηt are zero mean and constant variance iid random variables

independent of γt. Further the sequence, at is also assumed to be independent of θt′ , ∀t′ < t.

Assuming that the 1st two moments of ηt exists, the following results hold

1. E[θt] is finite ∀ t if | φ |< 1.

2. V (θt) is given by

Υt(0) = V (θt) = σ2(1 + φ2 + φ4 + . . .) + δ2
∞∑
k=1

φ2kλ2
t−k, (2.6)

where δ = V (γt). Further Υt(0) is non-negative and bounded if | φ |< 1 and | λt |≤

λ, λ > 0 ∀t, in which case

Υt(0) ≤
σ2 + δ2λ2

1− φ2
(2.7)

3. The auto-covariance function of lag k is given by Υt(k) = Cov(θt+k, θt)

Υt(k) = Cov(θt+k, θ) = φkΥt(0) ≤ φkσ
2 + δ2λ2

1− φ2
∀k. (2.8)

Proof. Let V (ηt) = σ2 and observe that E[at] = 0 and V (at) = σ2 + λ2
t δ

2, ∀t = 1, 2, . . ..

The proof of the results are given as below.

1. Notice that ,

E[θt] = α(1− φ) + φE[θt−1]

= α(1− φ)(1 + φ+ φ2 + φ3 + . . .)

so that E[θt] exists finitely if | φ |< 1.
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2.

Υt(0) = φ2V (θt−1) + [σ2 + δ2λ2
t ]

= φ2[φ2V (θt−2) + σ2 + δ2λ2
t−1] + [σ2 + δ2λ2

t ]

. . . . . . . . . . . .

= σ2(1 + φ2 + φ4 + . . .) + δ2[λ2
t + φ2λ2

t−1 + φ4λ4
t−1 . . .]

and if | φ |< 1 then

=
σ2

1− φ2
+ δ2

∞∑
k=0

φ2kλ2
t−k.

Further if the condition | λt |≤ λ, λ > 0 hold for all t, then the bound is immediate

from the expression of Υt(0).

3. The autocovariance function Υt(k) is given by

Υt(k) = E[(θt+k − α)(θt − α)]

= φE[(θt − α)E[(θt+k−1 − α) | Ft−1]]

since at+k is independent of θj ∀j < t+ k. Thus, by repeated substitutions we get

Υt(k) = φkΥt(0).

The bound on the auto-covariance function follows from (2.7).

From the above theorem, the following remarks can be made.

Remark: 1. The auto-correlation function is time invariant and depends only on the

lag which is similar to the weak stationary time series.

2. The upper bound of the auto-covariance function dampens to zero as the lag increases.

Thus, similar to weakly stationary series, the impact of the past realizations decreases

with the time horizon. However, unlike the weak stationary series, the auto-covariance

of a bounded stationary AR process may not reduce to a time invariant constant with

lag in the limit.
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3. The k-period ahead forecast for such a series is given by θ̂t+k = α+ φk(θt − α) so that

lim
k→∞

θ̂t+k = α. The forecast error is given by

êt(k) =
k−1∑
j=0

φjat+k−j

.

4. The fore cast error variance is given by:

V (êt(k)) =
k−1∑
j=0

φ2jV (at+k−j)

≤ 1− φ2k

(1− φ2)2
(σ2 + δ2λ) → σ2 + δ2λ

(1− φ2)2
, as k → ∞.

Thus the forecast error variance is bounded above and as the lag increases the sequence

of upper bounds also increase. Further, with increasing volatility persistence forecast

error variance increases.

The above discussion ensures that although the AR process assumed for volatility process

is not weakly stationary but the first two moments of the process are bounded and hence

the process and its forecast does not explode with increasing lag. In the following section

we discuss on the feedback effect for the proposed SVDF model with general innovation

distribution under the assumption of bounded stationarity.

2.2 Dynamic Feedback, Skewness and Leverage In Stochastic Volatil-

ity Model

The following lemma provides the expected unconditional return and volatility under the

model postulated in (2.3) and (2.4).

Lemma 2.2 Let yt and θt be the return and volatility at time t and the stochastic volatility

model describing the evolution of yt and θt be given as in (2.3-2.4). Suppose εt is distributed

with men 0 and variance unity and is independent of ηt which is distributed with mean 0 and
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variance σ2. Further suppose that the moment generating functions (MGF) of γt (denoted

by Mγt(u), ∀ u ∈ R) and ηt (denoted by Mηt(u), ∀ u ∈ R) exist and the first two derivatives

of the MGFs are denoted as M ′
X(u) and M ′′

X(u) respectively, X ∈ {γt, ηt}, t = 1, 2, . . . T .

Under the above postulates the following results hold:

1. µy,t = −At−1λy,tMηt

(
1
2

)
M ′

γt

(
λθt

2

)
, where At−1 = e

α+φ(θt−1−α)+µθ,t
2

2. V (yt | Ft−1) = A2
t−1

[
Mηt(1)

{
λ2
y,tM

′′
γ∗
t
(λθ,t) +Mγt(λθ,t)

}
− λ2

y,tM
2
ηt

(
1
2

)
M ′

γt
2
(

λθ,t

2

)]
3. µθ,t = −λθ,tE(γt)

4. V (θt | Ft−1) = λ2
θ,tV (γt) + σ2

Proof. 1. Define Zy,t = λy,tγt + εt and Zθ,t = λθ,tγt + ηt and assume E[yt | Ft−1] =

0 to maintain the mean reversibility of the mean corrected returns (yt). Denoting

e
α+φ(θt−1−α)+µθ,t

2 by At−1, µy,t is given as follows

µy,t = −At−1E[e
Zθ,t
2 Zy,t | Ft−1]

= −At−1λy,tMηt

(
1

2

)
M ′

γt

(
λθ,t

2

)
(2.9)

where M ′
γt(u) =

d
du
Mγt (u).

2. Denoting e
θt
2 Zy,t in (2.3) by Rt, ∀t = 1, 2, . . . T, the return variance is obtained as

V (yt | Ft−1) = E[y2t | Ft−1]

= E[R2
t | Ft−1]− µ2

y,t

= A2
t−1Mηt(1)[λ

2
y,tM

′′
γt(λθ,t) +Mγt(λθ,t)]− µ2

y,t

= A2
t−1

[
Mηt(1)

{
λ2
y,tM

′′
γt(λθ,t) +Mγt(λθ,t)

}
− λ2

y,tM
2
ηt

(
1

2

)
M ′

γt

2

(
λθ,t

2

)]
(2.10)

where M ′′
γt(u) =

d2

du2Mγt(u).
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3. Let Ft−1 be the information set available up to time t− 1. Note that

E[θt | Ft−1] = α+ φ(θt−1 − α)

⇒ µθ,t = −λθ,tE[γt] (2.11)

4. The variance of the volatility process is given as

V (θt | Ft−1) = λ2
θ,tV (γt) + σ2 (2.12)

Corollary 2.3 Observing that Mηt(1) ≥ M2
ηt

(
1
2

)
, the following lower bound can be obtained

from (2.10):

V (yt | Ft−1) ≥ A2
t−1Mηt(1)

[
λ2
y,t

{
M ′′

γt(λθ,t)−M ′
γt

2

(
λθ,t

2

)}
+Mγt(λθ,t)

]
(2.13)

Further, letting λθ,t → 0 the bound in (2.13) reduces to

V (yt | Ft−1) ≥ eα+φ(θt−1−α)Mηt(1)
[
λ2
y,tV (γt) + 1

]
(2.14)

The above corollary may be helpful in determining the minimum risk premium for options

based on returns yt. Next I provide an expression for the dynamic feedback effect for SVDF

model

Theorem 2.4 Under the model and the assumptions postulated in lemma 2.2, the dynamic

feedback ρt is given by

ρt =
λy,t

[
λθ,tMηt

(
1
2

){
M ′′

γt

(
λθ,t

2

)
−M ′

γt

(
λθ,t

2

)
E(γt)

}
+ E

(
ηte

ηt
2

)
M ′

γt

(
λθ,t

2

)]
√
Mηt(1)

{
λ2
y,tM

′′
γt(λθ,t) +Mγt(λθ,t)

}
− λ2

y,tM
2
ηt

(
1
2

)
M ′

γt
2
(

λθ,t

2

)√
λ2
θ,tδ

2 + σ2

.

(2.15)

Proof. The conditional covariance between yt and θt given the information set Ft−1 can be
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derived as follows:

Covt−1(yt, θt) = Cov(yt, θt | Ft−1,Ω)

= E[At−1e
λθ,tγt+ηt

2 (λθ,tγt + ηt)(λy,tγt + εt)]− µy,tµθ,t

= λy,tAt−1EγtE
[
e

λθ,tγt+ηt
2 (λθ,tγt

2 + γtηt)
]
− µy,tµθ,t

= λy,tAt−1

{
λθ,tMηt

(
1

2

)
Eγt

[
γt

2e
λθ,tγt

2

]
+ Eγt

[
γte

λθ,tγt
2

]
E
[
ηte

ηt
2

]}
− µy,tµθ,t

= λy,tAt−1

[
λθ,tMηt

(
1

2

)
M ′′

γt

(
λθ,t

2

)
+ E

(
ηte

ηt
2

)
M ′

γt

(
λθ,t

2

)]
− µy,tµθ,t

= λy,tAt−1

[
λθ,tMηt

(
1

2

){
M ′′

γt

(
λθ,t

2

)
−M ′

γt

(
λθ,t

2

)
E(γt)

}
+ E

(
ηte

ηt
2

)
M ′

γt

(
λθ,t

2

)]
(2.16)

Notice that existence of MGF of ηt ensures existence of E
(
ηte

ηt
2

)
and hence the expression

for feedback in (2.15) is immediate.

As a consequence of the above theorem the distributions of return and volatility shocks

can be characterized as follows.

Corollary 2.5 The class of distributions that can be considered to model the market factor

γt and the volatility shock ηt, ∀t = 1, 2, . . . T, are the ones admitting MGF so that the feedback

effect and hence the conditional or unconditional return moments exist. However, εt need

not be restricted by such property.

Thus in the remaining part of this paper I assume that the MGF of γt and ηt exists

∀ t = 1, 2, . . . T . Next I describe the leverage effect under the proposed model.

2.3 Dynamic Leverage in SVDF Model

The presence of conditional leverage effect in the proposed model is reflected through the

impact of current return on future volatility (Renault 2009). We prove in the following theo-

rem that the conditional expectation of future volatility depends linearly on the current asset
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return and the direction of the dependence is determined by the return impact parameter

as well as the volatility clustering parameter (φ).

Theorem 2.6 In the model described in (2.3-2.4) along the assumptions described in lemma

2.2, the conditional expectation of future volatility given current return is given as follows:

E[θt+1 | yt,Ft−1] = Ct +Dtφρtyt (2.17)

where ρt is the dynamic feedback effect, ut = λy,tγt+εt, vt = λθ,tγt+ηt, ωx,t =
√

V ar(xt), x ∈

{u, v} and

Ct = α+ φ2(θt−1 − α)− ωv,t

ωu,t

φρtE[ut | Ft−1]− At−1
ωv,t

ωu,t

φρtµy,tMγt

(
−λθ,t

2

)
Mηt

(
−1

2

)

Dt = At−1
ωv,t

ωu,t

Mγt

(
−λθ,t

2

)
Mηt

(
−1

2

)
> 0

The sign of the conditional leverage is determined by the same of the volatility clustering

parameter and the direction of the feedback effect.

Proof. Notice that,

E[θt+1 | yt,Ft−1] = Eθt [E(θt+1 | θt) | yt,Ft−1]

= α+ φ2(θt−1 − α) + φµθ,t + φE[(vt) | yt,Ft−1],

since γt+1 is independent of yt and its marginal expectation exists. Let v′t =
vt−E(vt)

ωv,t
and

u′
t =

ut−E(ut)
ωu,t

where ωv,t =
√

V ar(vt), ωu,t =
√
V ar(ut). Further, define wt =

v′t−ρtu′
t√

1−ρ2t
, where

ρt is the correlation between ut and vt. Notice that wt and u′
t are uncorrelated and E[wt] = 0.
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Hence,

E[θt+1 | yt,Ft−1] = αt−1 + φωv,tE [v′t | yt,Ft−1] ,

( where αt−1 = α+ φ2(θt−1 − α) and µθ,t = −E[vt | Ft−1])

= αt−1 −
ωv,t

ωu,t

φρtE[ut | Ft−1] +
ωv,t

ωu,t

φρtE [ut | yt,Ft−1]

= αt−1 −
ωv,t

ωu,t

φρtE[ut | Ft−1] + At−1
ωv,t

ωu,t

φρt(yt − µy,t)E
[
e−

vt
2 | Ft−1

]
( where At−1 is defined above )

= Ct + At−1
ωv,t

ωu,t

φρtytMγt

(
−λθ,t

2

)
Mηt

(
−1

2

)
= Ct +Dtφρtyt (2.18)

where Ct = αt−1 − ωv,t

ωu,t
φρtE[ut | Ft−1] − At−1

ωv,t

ωu,t
φρtµy,tMγt

(
−λθ,t

2

)
Mηt

(
−1

2

)
and Dt =

At−1
ωv,t

ωu,t
Mγt

(
−λθ,t

2

)
Mηt

(
−1

2

)
> 0. Hence the sign of the dynamic leverage depends on the

sign of feedback effect and the volatility clustering parameter. In particular if the feedback

effect and the volatility clustering parameter are of opposite sign then the future volatility

is negatively correlated to the current return.

2.4 Dynamic Skewness

This subsection attempts to explain the conditional return skewness in terms of the impact

parameters. The following theorem provides an expression for the conditional skewness.

Theorem 2.7 In the model described in (2.3-2.4) along the assumptions described in lemma

2.2, the conditional skewness of return is given as follows:

Skt =
Ψ3

t + 3ΛtΨt + 3∆t

Λ
3
2
t

(2.19)

where Ψt =
µy,t

At−1
, Λt =

V (yt|Ft−1)
A2

t−1
and

∆t

A3
t−1

= Mηt

(
3

2

)[
λ3
y,tM

′′′
γt

(
3λθ,t

2

)
+ 3λy,tM

′
γt

(
3λθ,t

2

)]
(2.20)

M ′′′
X (u) = d3

du3MX (u).
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Proof. Simple algebraic manipulation will show that

E
[
y3t | Ft−1

]
= 3E

[
e

3Zθ,t
2 Z3

y,t | Ft−1

]
+ 3µy,tV (yt | Ft−1) + µ3

y,t

where Zθ,t and Zy,t are defined as in theorem 2.2. Further,

E
[
e

3Zθ,t
2 Z3

y,t | Ft−1

]
= A3

t−1E
[
e

3Zθ,t
2

(
λ3
y,tγ

3
t + 3λy,tγtε

2
t

)
| Ft−1

]
= Mηt

(
3

2

)[
λ3
y,tM

′′′
γt

(
3λθ,t

2

)
+ 3λy,tM

′
γt

(
3λθ,t

2

)]

In the above expression we notice that the conditional skewness is not dependent on the

expected volatility or the persistence. Only the impact parameters and the variance of

the volatility distribution contributes to the conditional return skewness. Thus the model

disentangles the effect of past volatility from the return skewness.

It is difficult to gain further insight on the dynamic leverage effect without assuming

particular distributions for γt, εt and ηt. In the following section we make specific assumptions

about the distributions of the market factor and return and volatility innovations.

3 Dynamic Leverage In Joint SV Model With Skew-

ness and Kurtosis

The SVDF model proposed above aims to capture the skewness in returns and the dynamic

nature of the feedback effect together. In this section we first inspect the SVDF model for

skewed returns. In particular, I provide the expression for the feedback effect and conditional

skewness and their interpretation in terms of the impact parameters.

3.1 Gaussian SVDF Model

I assume that γt ∼ HN(0, 1), HN(0, 1) being the standard half-normal distribution and

εt ∼ N(0, 1), ηt ∼ N(0, σ2), ∀t = 1, 2, . . . in addition to the assumptions made in the SVDF
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model. The expression of feedback effect (ρt) can be derived in a similar manner as in

theorem 2.4. First we state the following useful lemma related to the moment generating

function of standard half normal distribution.

Lemma 3.1 Let us consider a standard half normal distribution random variable X with

mean and let, for any t ∈ R, MX(t) be the moment-generating function (MGF) of X. Then,

M ′
X(t) =

d

dt
MX(t) = tMX(t) +

√
2

π
(3.21)

M ′′
X(t) =

d2

dt2
MX(t) = {1 + t2}MX(t) + t

√
2

π
(3.22)

Proof. The MGF of X, MX(t), t ∈ R is given by

MX(t) = E[etX ]

=

√
2

π

∫ ∞

0

etxe−
x2

2 dx

=

√
2

π
e

t2

2

∫ ∞

0

e−
(x−t)2

2 dx

=

√
2

π
e

t2

2

∫ ∞

−t

e−
z2

2 dx, letting z = x− t

=

√
2

π
e

t2

2

[√
2π

2
+

∫ 0

−t

e−
z2

2 dz

]

= e
t2

2

[
1 +

√
2

π

√
2

∫ 0

− t√
2

e−w2

dw

]
, [ letting z = w

√
2]

= e
t2

2

[
1 +

2√
π

∫ t√
2

0

e−w2

dw

]

= e
t2

2

[
1 + erf

(
t√
2

)]
, where erf(u) =

2√
π

∫ u

0

e−w2

dw

= 2e
t2

2 Φ(t), [ since erf(u) + 1 = 2Φ(u
√
2)] (3.23)

and hence,

M ′
X(t) = tMX(t) +

√
2

π
= 2te

t2

2 Φ(t) +

√
2

π
. (3.24)
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Further, differentiating (3.21) with respect to t and substituting the expression for M ′
X(t)

we get

M ′′
X(t) = {1 + t2}MX(t) + t

√
2

π
. (3.25)

In the following theorem we derive the expression for dynamic leverage (ρt) under the

model postulated in (2.3-2.4) and the distributional assumptions stated above and state

some sufficient conditions in terms of impact parameters for negative leverage.

Theorem 3.2 Let yt and θt be the return and volatility at time t and the stochastic volatility

model describing the evolution of yt and θt be given as in (2.3-2.4) where γt follows standard

half normal distribution. Further γt is assumed to be independent of the normal variates

εt and ηt which are independent among themselves with mean 0 and variances 1 and σ2

respectively, ∀t = 1, 2, . . . n. Under this model the dynamic leverage effect ρt is given by

ρt =
λy,t

[
λθ,tMγt

(
λθ,t

2

){
λ2
θ,t

4
+ 1 + σ2

4
− λθ,t√

2π

}
+ 1√

2π

(
σ2 + λ2

θ,t

)
− 2λθ,t

π

]
√
e

σ2

4

{
Mγt(λθ,t)[λ2

y,t(λ
2
θ,t + 1) + 1] +

√
2
π
λθ,tλ2

y,t

}
− λ2

y,tM
′
γt

2
(

λθ,t

2

)√
λ2
θ,t

(
1− 2

π

)
+ σ2

(3.26)

where M ′
γt(u) and M ′′

γt(u) are as defined in (3.21-3.22).

Proof. Notice that, here Mηt

(
1
2

)
= e

σ2

8 and hence from (2.9)

µy,t = −At−1λy,te
σ2

8 M ′
γt

(
λθ,t

2

)
(3.27)

Further, observing that Mηt(1) = e
σ2

2 , expressions in (2.12) and (2.10) leads to

V (θt | Ft−1,Ω) = λ2
θ,t

(
1− 2

π

)
+ σ2 (3.28)
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and

V (yt | Ft−1,Ω) = A2
t−1e

σ2

2

{
Mγt(λθ,t)[λ

2
y,t(λ

2
θ,t + 1) + 1] +

√
2

π
λθ,tλ

2
y,t

}
− µ2

y,t

= A2
t−1e

σ2

4

[
e

σ2

4

{
Mγt(λθ,t)[λ

2
y,t(λ

2
θ,t + 1) + 1] +

√
2

π
λθ,tλ

2
y,t

}

−λ2
y,tM

′
γt

2

(
λθ,t

2

)]
. (3.29)

Further, E
[
ηte

ηt
2

]
= σ2

2
e

σ2

8 and hence from (2.16) :

Covt−1(yt, θt) = At−1e
σ2

8

[
λθ,tλy,tM

′′
γt

(
λθ,t

2

)
+ λy,t

σ2

2
M ′

γt

(
λθ,t

2

)]
− µy,tµθ,t

= At−1e
σ2

8

[
λy,tλθ,t

{(
λ2
θ,t

4
+ 1

)
Mγt

(
λθ,t

2

)
+

√
2

π

λθ,t

2

}

+ λy,t
σ2

2

{
λθ,t

2
Mγt

(
λθ,t

2

)
+

√
2

π

}]
− µy,tµθ,t

= At−1e
σ2

8 λy,t

[
λθ,tMγt

(
λθ,t

2

){
λ2
θ,t

4
+ 1 +

σ2

4
− λθ,t√

2π

}
+

1√
2π

(
σ2 + λ2

θ,t

)
− 2λθ,t

π

]
(3.30)

Hence the expression for leverage in (3.26) is immediate.

Remark: The correlation coefficient varies with respect the impact parameters as well as

the variance of the volatility. A necessary and sufficient condition for the feedback effect to

be negative is that λy,t and κt = λθ,tMγt

(
λθ,t

2

){
λ2
θ,t

4
+ 1 + σ2

4
− λθ,t√

2π

}
+ 1√

2π

(
σ2 + λ2

θ,t

)
− 2λθ,t

π

are of opposite sign (∀σ > 0). Notice that κt has a minimum at λmin
θ,t for each σ > 0 with

minimum value κmin
t at each time point t = 1, 2, . . . , T . Figure 1 in Appendix A plots κmin

t

against σ for any t.

As evident from figure 1, κmin
t exceeds zero and numerical computation shows that the

corresponding σ = 0.74182. Thus κt can take negative values only for σ ∈ (0, 0.7419819){=

Imin}. Thus, to find the range of λθ,t so that κt < 0, we restrict σ within this interval. Further,

numerically it can be verified that there are only two roots to κt = 0, say λ1
θ,t < λ2

θ,t, for

σ ∈ Imin. Figure 2 in Appendix A show the plots of λ1
θ,t and λ2

θ,t against σ ∈ Imin.
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It is clear from the above figures that the interval within which κt < 0 reduces with

increasing σ. Thus necessary and sufficient condition for feedback to be negative is translates

to either λy,t < 0 and λθ,t lies out side the interval (λ
1
θ,t, λ

2
θ,t) or the other way around where

the limits λi
θ,t, i = 1, 2 depend on the variance of the volatility process.

Remark: Figures (3-4) given in the appendix provide the feedback effect surface corre-

sponding to impact parameters for given volatility variances.

It may be noticed from the above figures that as σ → ∞, the impact surface closes to the

constant plane at zero. Observing that very high volatility variance induces positive proba-

bility for the event that realization of conditional volatility is far away from its conditional

mean. Such a case may happen in times of bubbles and crashes. One possible explanation

for almost zero feedback could be that during such time, market factor impacts are outper-

formed by the random shocks and hence feedback appears insignificant. In the particular

case of no impact of market factor on volatility (λθ,t → 0), simple algebraic calculation will

reveal that ρt → λy,tσ√
2πe

σ2
4 (λ2

y,t+1)−2λ2
y,t

, which tends to 0 with increasing σ.

Remark: Notice that for a standard half-normal random variable X,

M ′′′
X (u) =

d3

du3
MX(u) = u(u2 + 3)MX(u) +

√
2

π
(u+ 1) (3.31)

Hence, from theorem 2.7, the conditional skewness could be derived.

4 Discussion

In this paper the inter connection between feedback effect and return skewness has been

established which lead to further interesting insights. First, I have developed a parsimonious

single factor SV model to explain the linkage between return skewness and feedback effect as

mentioned by Renault (2009). This model leads to a simple characterization of the admissible

distributions for return and its volatility. Precisely, the skewness of returns has been shown

as a perturbation of symmetric return error with a positive “market factor” common to
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both return and volatility and the feedback is generated as a result of the shared factor

between return and volatility. Secondly, the reaction of the feedback effect to the variance

of the volatility process has been shown. The interesting fact that could be noticed from

the feedback surface is that if the volatility process itself has very high variance then the

market impacts matter in infinitesimal. The third issue that has been addressed here is to

accommodate the dynamic nature of the skewness as mentioned in Boyer et al. (2010). In

particular, the concept of bounded stationarity has been introduced as a generalization of

weakly stationary process and the non-stationarity arising out of dynamic skewness has been

tackled with the bounded stationarity which enables finite forecasts of volatility process.

This paper also leaves scope for further research both in theoretical and application

aspects of SV model. The heavy tail nature of returns could be generated using a scaling to

the skew family of error distributions. Since the model is saturated, it is difficult to estimate

the parameters in a frequentist set up. As a solution Bayesian Monte Carlo Markov Chain

methods could be used to resolve the parameter estimation problem (Jacquier et al. 2004).

Further, in case of multivariate SV models prior information on feedback could be used to

elicit admissible prior distribution for MCMC estimation. On the application part I plan

to apply the model on S&P500 returns and volatility index of Chicago board of options

exchange and compare in terms of Bayesian model complexity measures.
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Figure 1: Minimum value of κt for different values of σ
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Figure 3: Feedback surface plots for σ =0.001(blue), 0.1(yellow), 1(red), 2(green)
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Figure 4: Feedback surface plots for σ =3 (blue), 5 (yellow), 10 (red), 20 (green)
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