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Abstract

Let X1, X2, . . . , Xn (resp. Y1, Y2, . . . , Yn) be independent random variables such that

Xi (resp. Yi) follows generalized exponential distribution with shape parameter θi and

scale parameter λi (resp. δi), i = 1, 2, . . . , n. Here it is shown that if λ = (λ1, λ2, . . . , λn)

majorizes δ = (δ1, δ2, . . . , δn) then Xn:n will be greater than Yn:n in reversed hazard rate

ordering. That no relation exists between Xn:n and Yn:n, under same condition, in terms of

likelihood ratio ordering has also been shown. It is also shown that, if Yi follows generalized

exponential distribution with parameters
(
λ, θi

)
, where λ is the mean of all λi’s, i = 1 . . . n,

then Xn:n is greater than Yn:n in likelihood ratio ordering. In this context, an error in Mar-

shall, Olkin and Arnold [Inequalities: Theory of Majorization and Its applications (2011)]

has been corrected, and some new results on majorization have been developed.

Keywords and Phrases: Hazard rate function, majorization, reversed hazard rate function,

Schur-convex and Schur-concave functions, stochastic orders.
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1 Introduction

Let X1,X2, . . . ,Xn be the lifetimes of the n components forming the system under consid-
eration. We write X1:n ≤ X2:n ≤ . . . ≤ Xn:n to represent order statistics from X1,X2, . . . ,Xn.
Sometimes we write X(i) to represent Xi:n if there is no ambiguity. Order statistics play an
important role in statistics, reliability theory, applied probability and many other related fields.
There is a one-to-one correspondence between order statistics and a k-out-of-n system. It is
a system which functions if and only if at least k of the n components function. The time to
failure of a k-out-of-n system with component lifetimes X1, X2, . . ., Xn corresponds to the
(n− k+ 1)th order statistic Xn−k+1:n. Series system and parallel system are particular cases of
a k-out-of-n system. A series system is an n-out-of-n system and a parallel system is a 1-out-
of-n system. Order statistics have been extensively studied in the case when the observations
are independent and identically distributed (i.i.d.). Due to the complicated expressions of the
distributions in the non-i.i.d. case, only limited results are found in the literature. One may
refer to David and Nagaraja (2003), Balakrishnan and Rao (1998a, 1998b) for results on the
independent and non-identically (i.ni.d.) distributed random variables.

Due to nice mathematical form and the memoryless property, the exponential distribution
has widely been applied in statistics, reliability, operations research, life testing and many other
areas. One may refer to Barlow and Proschan (1975), Balakrishnan and Basu (1995), Dykstra
et al. (1997), and Khaledi and Kochar (2000) for the study on exponential distribution. Zhao
et al. (2009) and Zhao and Balakrishnan (2012) studied stochastic comparison of the sec-
ond order statistics from independent heterogeneous exponential random variables as well as
multiple-outlier heterogeneous exponential random variables. Recently, Torrado and Kochar
(2014) also studied the same for Weibull and multiple-outlier Weibull models. Gupta and
Kundu (1999) defined generalized exponential distribution (GE) and proved some interesting
results of this distribution. A random variable X is said to have generalized exponential (also
known as exponentiated exponential) distribution if the distribution function of X is given by

F (x;λ, θ) =
(
1 − e−λx

)θ
, x > 0, λ, θ > 0, (1.1)

where θ is the shape parameter and λ is the scale parameter. Clearly, this distribution is a
generalization of exponential distribution in the sense that one can obtain exponential distri-
bution from this distribution by taking θ = 1. They also pointed out that unlike exponential
distribution this distribution has increasing (decreasing) failure rate for θ > (<)1 for any fixed
λ. Therefore, if it is known that the data are from a regular maintenance environment, it may
make more sense to fit generalized exponential distribution than exponential distribution. In
this paper our main aim is to compare two parallel systems in terms of reversed hazard rate
order and likelihood ratio order when the components are from two heterogeneous generalized
exponential distributions. In the process of developing the results, we correct a mistake in
Marshall et al. (2011). We also discuss some new findings in the theory of majorization. The
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organization of the paper is as follows.
In Section 2, we give different notations and definitions used in this paper. Results related

to reversed hazard rate (rh) order and likelihood ratio (lr) order between two order statistics
Xn:n and Yn:n, where the components are from two i.ni.d. generalized exponential distributions
are given in Section 3. We have shown that there exists lr ordering between X2:2 and Y2:2 and
one counterexample is also provided here to show that no comparison between X3:3 and Y3:3

can be made in terms of lr ordering. It is also shown that, under some relaxation of the condi-
tions on the parameters, there may exists lr order between Xn:n and Yn:n. lr ordering between
Xn:n and Yn:n is also established for the case of multiple-outlier GE model. Throughout the
paper the word increasing (resp. decreasing) and nondecreasing (resp. nonincreasing) are used
interchangeably, and � denotes the set of real numbers {x : −∞ < x <∞}.

2 Notations, Definitions and Preliminaries

Let X and Y be two nonnegative random variables having distribution functions F and G,
probability density functions f and g, hazard rate functions rX and rY , and reversed hazard
rate functions rX and rY respectively. Further, write F ≡ 1 − F and G ≡ 1 − G as the
corresponding survival functions. The following well known definitions may be obtained in
Shaked and Shanthikumar (2007).

Definition 2.1 X is said to be smaller than Y in

(i) likelihood ratio ordering (written as X ≤lr Y ) if g(x)
f(x) is increasing in x ≥ 0;

(ii) hazard rate ordering (written as X ≤hr Y ) if rX(x) ≥ rY (x), for all x ≥ 0;

(iii) reversed hazard rate ordering (written as X ≤rh Y ) if rX(x) ≤ rY (x), for all x ≥ 0.

It can be checked that (iii) holds if and only if

G(x)
F (x)

is increasing in x ≥ 0. (2.1)

It is well known that the notion of majorization is quite useful in establishing various inequali-
ties. Let x(1) ≤ x(2) ≤ · · · ≤ x(n) be the increasing arrangements and x[1] ≥ x[2] ≥ · · · ≥ x[n] be
the decreasing arrangements of the components of the vector x=(x1, x2, . . . , xn). The following
definitions may be obtained in Marshall et al. (2011).

Definition 2.2 Let In denote an n-dimensional Euclidean space where I ⊆ �.

(i) A point x=(x1, x2, . . . , xn) ∈ In is said to majorize another point y=(y1, y2, . . . , yn) ∈ In

(written as x
m	 y) if

j∑
i=1

x[i] ≥
j∑

i=1

y[i], j = 1, 2, . . . , n− 1, and
n∑

i=1

x[i] =
n∑

i=1

y[i] (2.2)
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or equivalently
j∑

i=1

x(i) ≤
j∑

i=1

y(i), j = 1, 2, . . . , n− 1, and

n∑
i=1

x(i) =
n∑

i=1

y(i) (2.3)

(ii) A function ψ : In → � is said to be Schur-convex (Schur-concave) on In if x
m	 y implies

ψ (x) ≥ (≤)ψ (y) for all x, y ∈ In. (2.4)

Notation 2.1 Let us define the following notations. The first two are borrowed from Marshall
et al. (2011).

(i) D = {(x1, x2, . . . , xn) : x1 ≥ x2 ≥ . . . ≥ xn}.

(ii) D+ = {(x1, x2, . . . , xn) : x1 ≥ x2 ≥ . . . ≥ xn ≥ 0}.

(iii) D+ = {(x1, x2, . . . , xn) : 0 ≤ x1 ≤ x2 ≤ . . . ≤ xn}

3 Main Results

Let Xi (resp. Yi), i = 1, 2, . . . , n be n independent random variables following generalized
exponential distribution having distribution function F (·;λi, θi) (resp. F (·; δi, θi)), for all i =
1, 2, . . . , n, where F (·;λ, θ) is as given in (1.1). Let Fn:n (·;λ,θ), Gn:n (·; δ,θ) be the distribution
functions of Xn:n and Yn:n respectively, where λ = (λ1, λ2, . . . , λn) ∈ D+, δ = (δ1, δ2, . . . , δn) ∈
D+ and θ = (θ1, θ2, . . . , θn) ∈ D+. Then, clearly

Fn:n (x;λ,θ) =
n∏

i=1

F (x;λi, θi) =
n∏

i=1

(
1 − e−λix

)θi

,

and

Gn:n (x; δ,θ) =
n∏

i=1

F (x; δi, θi) =
n∏

i=1

(
1 − e−δix

)θi

.

The following proposition may be obtained in Marshall et al. (2011, p. 84).

Proposition 3.1 Let I ⊂ � be an open interval and let φ : In → � be continuously differen-
tiable. Then, for φ to be Schur-concave on In, the conditions

φ is symmetric on In (3.1)

and
φ(i)(z) is increasing in i = 1, 2, . . . , n for all z = (z1, z2, . . . , zn) ∈ D ∩ In

are necessary as well as sufficient, where φ(i)(z) = ∂
∂zi
φ(z).

Alternatively, a function φ in In is Schur-concave if and only if (3.1) holds and

(zi − zj)(φ(i)(z) − φ(j)(z)) ≤ 0, for all z ∈ In ∩D,
for i 
= j. �
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On using the above proposition, we have the following lemma.

Lemma 3.1 Let φ(x) =
∑n

i=1 gi(xi), x ∈ D+, where gi : � → � is differentiable, for all
i = 1, 2, . . . , n. Then φ is Schur-concave if and only if g′i(a) ≤ g′i+1(b) whenever a ≥ b, for all
i = 1, 2, . . . , n − 1, where g′(a) = dg(x)

dx

∣∣
x=a

. �

Now, we are in a position to prove the following theorem.

Theorem 3.1 Let, φ(x) =
∑n

i=1 uig(xi) where u = (u1, u2, . . . , un) and let I ⊂ � be an
interval. Consider a function g : I → �.

(a) If u ∈ D+ and

(i) g(·) is increasing and convex then φ is Schur-convex;

(ii) g(·) is decreasing and concave then φ is Schur-concave.

(b) If u ∈ D+ and

(i) g(·) is increasing and concave then φ is Schur-concave;

(ii) g(·) is decreasing and convex then φ is Schur-convex.

Proof:

(a) Let gi (xi) = uig (xi). If g(·) is increasing and convex, then for all a ≥ b, g
′
(a) ≥ g

′
(b) ≥ 0.

Again, if u ∈ D+ then ui ≥ ui+1 ≥ 0 and consequently, uig
′
(a) ≥ ui+1g

′
(b). Hence, by

Proposition H.2 of Marshall et al. (2011), (i) is proved. To prove (ii), as g(·) is decreasing,
let −g′

(x) = G(x) > 0 for all x. Again, as g(·) is concave then for all a ≥ b, g
′
(a) ≤ g

′
(b)

implying that G(a) ≥ G(b). So, if u ∈ D+ then uiG(a) ≥ ui+1G(b) and consequently
uig

′
(a) ≤ ui+1g

′
(b). Hence, by Lemma 3.1, the result is proved.

(b) Note that g(·) is increasing and concave implies that for all a ≥ b, g
′
(a) > 0, g

′
(b) > 0

and g
′
(a) ≤ g

′
(b). So, if u ∈ D+ and consequently ui ≤ ui+1, then uig

′
(a) ≤ ui+1g

′
(b).

Hence, by Lemma 3.1, (i) is proved. If g(·) is decreasing and convex, then for all a ≥ b,
g
′
(a) ≥ g

′
(b) and consequently G(a) ≤ G(b). So, u ∈ D+ implies that uiG(a) ≤ ui+1G(b),

which gives that uig
′
(a) ≥ ui+1g

′
(b). Hence, (ii) follows from Proposition H.2 of Marshall

et al. (2011) �

The following counterexample shows that if g (·) is increasing and convex and u ∈ D+, then
φ (x) may not be Schur-convex or Schur-concave.

Counterexample 3.1 Let g(x) = ex, x = (30, 8, 2) and y = (18, 12, 10). So, clearly g(x) is

increasing and convex and x
m	 y. Now, if u = (1, 2, 3) ∈ D+ is taken, then it can be easily

checked that
3∑

i=1

uig (xi) −
3∑

i=1

uig (yi) = 1.068640854 × 1013 > 0,
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giving φ (x) > φ (y). Again, if x = (4, 3, 1) and y = (3, 3, 2) is taken then, for u = (1, 2, 30) ∈
D+ and for the same function g (·), it can be easily checked that, although x

m	 y,

3∑
i=1

uig (xi) −
3∑

i=1

uig (yi) = −105.610615 < 0,

giving φ (x) < φ (y). So, φ (x) is neither Schur-convex nor Schur-concave. �

That nothing can be said about the Schur-convexity of φ (x) when g (·) is increasing and concave,
and u ∈ D+, is shown in the next counterexample.

Counterexample 3.2 For x = (30, 8, 2), y = (18, 12, 10) and u = (3, 2, 1) ∈ D+, if g(x) =
lnx is taken, which is increasing and concave, then

3∑
i=1

uig (xi) −
3∑

i=1

uig (yi) = −0.887891257 < 0,

giving φ (x) < φ (y). Again, for x = (4, 3, 1), y = (3, 3, 2) and u = (30, 2, 1) ∈ D+ and, for the
same function g (·), it can be seen that

3∑
i=1

uig (xi) −
3∑

i=1

uig (yi) = 7.937314993 > 0,

satisfying the claim. �

The counterexample given below shows that φ (x) is neither Schur-convex nor Schur-concave if
the function g(·) is decreasing and convex and u ∈ D+.

Counterexample 3.3 Let g(x) = e−x, which is decreasing and convex, and x = (4, 3, 1) and
y = (3, 3, 2). Now, if u = (3, 2, 1) ∈ D+ is taken, then it can be easily verified that

3∑
i=1

uig (xi) −
3∑

i=1

uig (yi) = 0.138129869 > 0,

giving φ (x) > φ (y). Again, if we take x = (3, 2, 1) and y = (2, 2, 2) then, for u = (26, 2, 1) ∈
D+ and for the same function g (·), it can be easily checked that, although x

m	 y,

3∑
i=1

uig (xi) −
3∑

i=1

uig (yi) = −1.991709429 < 0,

giving φ (x) < φ (y). So, φ (x) is neither Schur-convex nor Schur-concave. �

The following counterexample shows that if g (·) is decreasing and concave and u ∈ D+, then
φ (x) is neither Schur-convex nor Schur-concave function.
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Counterexample 3.4 Let g(x) = 1 − e−9x−0.4
, which is decreasing and concave for all x ∈

[0, 10]. Now, if we take x = (8, 4, 3), y = (7, 4, 4) and u = (10, 10.2, 10.4) ∈ D+, then it can

also be checked that although x
m	 y,

3∑
i=1

uig (xi) −
3∑

i=1

uig (yi) = −0.0108009 < 0,

giving φ (x) < φ (y). Again, for the same function g (·) and for same x, y, if u = (1, 20, 30) ∈
D+ is taken then

3∑
i=1

uig (xi) −
3∑

i=1

uig (yi) = 0.0759684 > 0,

giving φ (x) > φ (y). So, φ (x) is neither Schur-convex nor Schur-concave. �

From Counterexample 3.3 it is clear that the parenthetical statement of Proposition H.2.b in
Marshall et al. (2011, p. 133), is not correct. We also observe that the parenthetical statement
of Proposition H.2.b with ui ≡ 1 contradicts Proposition C.1 of Marshall et al. (2011, p. 92).
The observations from the above results and counterexamples are reported in the following
table.

g is increasing g is decreasing
u ∈ D+ u ∈ D+ u ∈ D+ u ∈ D+

g is convex s-convex Inconclusive Inconclusive s-convex

g is concave Inconclusive s-concave s-concave Inconclusive

Below we give a lemma without proof which will be used to prove Lemma 3.3 which in turn
will be used to prove the upcoming theorem.

Lemma 3.2 For all x, t ≥ 0, let φ(tx) be decreasing in x. Then g(x) = xφ(tx) is convex if and
only if, for all x, t ≥ 0,

2φ1(tx) + txφ′1(tx) < 0,

where φ1(tx) = −φ′(tx) > 0 and φ′(z) = d
dzφ(z). �

The following lemma is used to prove Theorem 3.2.

Lemma 3.3 For y > 0, g(y) = y (eyx − 1)−1 is decreasing and convex in y.

Proof: That g(y) is decreasing can be seen by differentiation whereas the convexity of g(y)
can be proved by some algebra with the help of Lemma 3.2. �

The following theorem shows that, if λ majorizes δ, then Xn:n will be greater than Yn:n in
reversed hazard rate ordering.

Theorem 3.2 If Xi, Yi follow generalized exponential distributions with parameters (λi, θi)

and (δi, θi) respectively, for i = 1, 2, . . . , n, then λ
m	 δ implies Xn:n ≥rh Yn:n.
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Proof: Let rX (·;λ,θ) and rY (·; δ,θ) be the reversed hazard rate functions of Xn:n and Yn:n

respectively. Then, clearly

rX (x;λ,θ) =
∑n

i=1
θiλie−λix

1−e−λix =
∑n

i=1 θig(λi),

rY (x; δ,θ) =
∑n

i=1
θiδie−δix

1−e−δix =
∑n

i=1 θig(δi), say,

where g(y) = y
eyx−1 for all y > 0. Now, it is enough to prove that rX (x;λ,θ) is Schur-convex,

which follows from Lemma 3.3 and Theorem 3.1 b(ii).

Remark 3.1 Theorem 3.2 improves Theorem 3.2 of Dykstra et al. (1997) in the sense that
the later can be obtained from the former by taking θ1 = θ2 = . . . = θn = 1. �

Now the question arises whether Theorem 3.2 can be strengthened further by replacing rh order
between Xn:n and Yn:n by lr order. Although, for n = 3, the following counterexample gives a
negative answer to it, Theorem 3.3 extends Theorem 3.2 to likelihood ratio ordering for n = 2.

Counterexample 3.5 For n = 3, let λ = (λ1, λ2, λ3) = (8, 2, 0.1) ∈ D+, δ = (δ1, δ2, δ3) =

(5, 5, 0.1) ∈ D+ and θ = (θ1, θ2, θ3) = (1, 2, 3) ∈ D+. Clearly, λ
m	 δ. Now

F3:3(x) =
(
1 − e−8x

) (
1 − e−2x

)2 (
1 − e−0.1x

)3

and
G3:3(x) =

(
1 − e−5x

) (
1 − e−5x

)2 (
1 − e−0.1x

)3
.

Let fn:n(·) and gn:n(·) be the density functions of Xn:n and Yn:n respectively. Then, by writing
a(y) = f3:3(x)

g3:3(x) , where x = − ln y, 0 < y < 1, we see from Figure 3.1 that a(y) is not monotone.
Thus, there is no lr ordering between Xn:n and Yn:n. �

0.05 0.1 0.15 0.2

1.0025

1.005

1.0075

1.01

1.0125

1.015

Figure 3.1: Graph of a(y)
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Theorem 3.3 Let Xi, Yi follow generalized exponential distributions with parameters (λi, θi)

and (δi, θi) respectively, for i = 1, 2, then λ
m	 δ implies X2:2 ≥lr Y2:2.

Proof: Let F2:2(·) and G2:2(·) be the distribution functions of X2:2 and Y2:2 respectively. Then

F2:2(x) =
2∏

i=1

(
1 − e−λix

)θi

and

G2:2(x) =
n∏

i=1

(
1 − e−δix

)θi

.

If f2:2(x) and g2:2(x) be the density functions of X2:2 and Y2:2 respectively, then

f2:2(x)
g2:2(x)

=
λ1θ1

eλ1x−1
+ λ2θ2

eλ2x−1
δ1θ1

eδ1x−1
+ δ2θ2

eδ2x−1

F2:2(x)
G2:2(x)

.

As λ
m	 δ, by Theorem 3.2 it can be written that F2:2(x)

G2:2(x) is increasing in x ≥ 0 . So, we have
only to show that

g(x) =
λ1θ1

eλ1x−1
+ λ2θ2

eλ2x−1
δ1θ1

eδ1x−1
+ δ2θ2

eδ2x−1

=
θ1u(λ1x) + θ2u(λ2x)
θ1u(δ1x) + θ2u(δ2x)

is increasing in x, where u(x) = x
ex−1 . Now, u

′
(x) = u(x)v(x)

x (say) where v(x) = ex−1−xex

ex−1 . It can
be easily shown that both u(x) and v(x) are decreasing in x. Now, as g

′
(x), the differentiation

of g(x) with respect to x, gives

g
′
(x)

sign
= (θ1u(δ1x) + θ2u(δ2x)) (θ1u(λ1x)v(λ1x) + θ2u(λ2x)v(λ2x))−
(θ1u(λ1x) + θ2u(λ2x)) (θ1u(δ1x)v(δ1x) + θ2u(δ2x)v(δ2x) ,

it is clear that g(x) is increasing in x ≥ 0 if

Ψ(λ1, λ2) =
θ1u(λ1x)v(λ1x) + θ2u(λ2x)v(λ2x)

θ1u(λ1x) + θ2u(λ2x)

is schur convex in (λ1, λ2). Now, differentiating Ψ(λ1, λ2) with respect to λ1 and λ2, we get

∂Ψ
∂λ1

sign
= θ1x

[
θ2u

′
(λ1x)u(λ2x)(v(λ1x) − v(λ2x)) + u(λ1x)v

′
(λ1x)(θ1u(λ1x) + θ2u(λ2x))

]

and
∂Ψ
∂λ2

sign
= θ2x

[
θ1u

′
(λ2x)u(λ1x)(v(λ2x) − v(λ1x)) + u(λ2x)v

′
(λ2x)(θ1u(λ1x) + θ2u(λ2x))

]
.

Assuming w(x) = u(x)v
′
(x), we get

∂Ψ
∂λ1

− ∂Ψ
∂λ2

sign
= x

[
(θ1θ2(v(λ1x) − v(λ2x))(u

′
(λ1x)u(λ2x) + u

′
(λ2x)u(λ1x)))

+ ((θ1u(λ1x) + θ2u(λ2x))(θ1w(λ1x) − θ2w(λ2x)))] .
(3.2)

Again, as w(x) = u(x)v
′
(x) and v(x) is decreasing in x, then for all x ≥ 0, w(x) < 0. Again,

by Lemma (3.3) of Torrado and Kochar (2014), w(x) is increasing in x. So, as λ1 ≥ λ2 and
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a) v(x) is decreasing in x, (v(λ1x) − v(λ2x)) < 0,

b) u(x) is decreasing in x, u
′
(λ1x), u

′
(λ2x) < 0, and

c) w(x) is increasing and negative for all x ≥ 0, θ1w(λ1x) ≤ θ2w(λ2x) for all θ1 ≤ θ2 and
x ≥ 0.

Therefore, from (3.2) it is clear that ∂Ψ
∂λ1

− ∂Ψ
∂λ2

> 0, proving Ψ(λ1, λ2) is Schur-convex by
Theorem A3 of Marshall et al.

Remark 3.2 The above theorem improves Theorem 3.1 of Dysktra et al. (1997) in the sense
that the later can be obtained from the former by taking θ1 = θ2 = 1.

Below we also see that there exists lr order between Xn:n and Yn:n if Yi is a random variable
following generalized exponential distribution with parameter

(
λ, θi

)
, i = 1, 2, . . . , n, where

λ = 1
n

∑n
i=1 λi.

Theorem 3.4 Let Xi, Yi follow generalized exponential distributions with parameters (λi, θi)
and

(
λ, θi

)
respectively, for i = 1, 2, . . . , n. Then Xn:n ≥lr Yn:n.

Proof: Let Fn:n(·) and Gn:n(·) be the distribution functions of Xn:n and Yn:n respectively.
Then

logFn:n(x) =
n∑

i=1

θi log
(
1 − e−λix

)

and

logGn:n(x) =
n∑

i=1

θi log
(
1 − e−λx

)
,

which, on differentiation with respect to x, gives

fn:n(x) = Fn:n(x)
n∑

i=1

θiλie
−λix

1 − e−λix

and

gn:n(x) = Gn:n(x)
n∑

i=1

θiλe
−λx

1 − e−λx
,

where fn:n(·) and gn:n(·) are the density functions of Xn:n and Yn:n respectively. So, to show
that Xn:n ≥lr Yn:n, we have to show that

fn:n(x)
gn:n(x)

=
1

nθ λ

n∑
i=1

θiλi

(
eλx − 1

)

(eλix − 1)
Fn:n(x)
Gn:n(x)

, (3.3)

where θ = 1
n

∑n
i=1 θi, is increasing in x ≥ 0. Now, from Theorem 3.2 and (2.1), and noting the

fact that (λ1, λ2 . . . , λn)
m	 (

λ, λ . . . , λ
)
, it is clear that Fn:n(x)

Gn:n(x) is increasing in x ≥ 0. So, from
(3.2), it is only required to show that

g(x) =
n∑

i=1

θiλi

(
eλx − 1

)

(eλix − 1)
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is increasing in x ≥ 0. Differentiating g(x) with respect to x, we have

g
′
(x) = λeλx

n∑
i=1

θiλi

(eλix − 1)
−

(
eλx − 1

) n∑
i=1

θiλ
2
i e

λix

(eλix − 1)2
. (3.4)

It can be shown that each of λ2
i e−λix

(1−e−λix)2 and 1
λi

(
1 − e−λix

)
is decreasing in λi. Thus, for θ ∈ D+

and λ ∈ D+, we have, by using Equation (1.5) of Mitrinović et al. (1993, p. 240), that

n∑
i=1

θiλi

eλix − 1
≥ 1
n

n∑
i=1

θiλ
2
i e

−λix

(1 − e−λix)2

n∑
i=1

(
1 − e−λix

)
λi

.

Thus, g(x) is increasing in x, if for all x ≥ 0,

λ

n

n∑
i=1

1 − e−λix

λi
−

(
1 − e−λx

)
≥ 0,

which holds by judiciously using AM −GM inequality. Hence, the result follows.

Remark 3.3 The above theorem improves Theorem 2.1 (b) of Dykstra et al. (1997) in the
sense that the later can be obtained from the former by taking θ1 = θ2 = . . . = θn = 1 and by
noticing the fact that lr ordering implies fr ordering.

We have shown through counterexamples that likelihood ratio ordering between Xn:n and Yn:n

with heterogeneous generalized exponential components is not possible for any positive inte-
ger n. Next theorem shows that a similar result still holds for multiple-outlier generalized
exponential model.

Theorem 3.5 Let X1,X2, . . . ,Xn be independent random variables following the multiple-
outlier generalized exponential model such that Xi ∼ GE (θi, λ1) for i = 1, 2, . . . , n1 and
Xj ∼ GE (φj , λ2) for j = 1, 2, . . . , n2, n1 + n2 = n with λ1 > λ2 and θ1 < θ2 < . . . <

θn1 < φ1 < φ2 < . . . < φn2. Let Y1, Y2, . . . , Yn be another set of independent random vari-
ables following multiple-outlier generalized exponential model such that Yi ∼ GE (θi, δ1) for
i = 1, 2, . . . , n1 and Yj ∼ GE (φj , δ2) for j = 1, 2, . . . , n2, n1 + n2 = n with δ1 > δ2 and
same conditions on θi’s and φj ’s as for the random variables Xi’s. If

∑n1
i=1 θi ≤

∑n2
i=1 φi, then

(λ1, λ1, . . . , λ1,︸ ︷︷ ︸
n1

λ2, λ2, . . . , λ2︸ ︷︷ ︸
n2

)
m	 (δ1, δ1, . . . , δ1,︸ ︷︷ ︸

n1

δ2, δ2, . . . , δ2︸ ︷︷ ︸
n2

) implies Xn:n ≥lr Yn:n.

Proof: Let
∑n1

i=1 θi = θ and
∑n2

i=1 φi = φ. As defined before, distribution functions of Xn:n and
Yn:n are given as

Fn:n(x) =
n1∏
i=1

(
1 − e−λ1x

)θi
n2∏
j=1

(
1 − e−λ2x

)φj

=
(
1 − e−λ1x

)θ (
1 − e−λ2x

)φ

and

Gn:n(x) =
n1∏
i=1

(
1 − e−δ1x

)θi
n2∏

j=1

(
1 − e−δ2x

)φj

=
(
1 − e−δ1x

)θ (
1 − e−δ2x

)φ
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with
fn:n(x)
gn:n(x)

=
λ1θ

eλ1x−1
+ λ2φ

eλ2x−1
δ1θ

eδ1x−1
+ δ2φ

eδ2x−1

Fn:n(x)
Gn:n(x)

.

Using the same logic and same symbols as used in Theorem (3.3), to show that Xn:n ≥lr Yn:n,
we have to show that

g(x) =
λ1θ

eλ1x−1
+ λ2φ

eλ2x−1
δ1θ

eδ1x−1
+ δ2φ

eδ2x−1

=
θu(λ1x) + φu(λ2x)
θu(δ1x) + φu(δ2x)

is increasing in x, where u(x) = x
ex−1 . Now taking u

′
(x) = u(x)v(x)

x where v(x) = ex−1−xex

ex−1 , it
can be easily shown that both u(x) and v(x) are decreasing in x. Next, differentiating g(x) as
before

g
′
(x)

sign
= (θu(δ1x) + φu(δ2x)) (θu(λ1x)v(λ1x) + φu(λ2x)v(λ2x))−
(θu(λ1x) + φu(λ2x)) (θu(δ1x)v(δ1x) + φu(δ2x)v(δ2x) ,

and to show that the above expression is greater than zero, we have only to prove that the
function

Ψ(λ1, λ2) =
θu(λ1x)v(λ1x) + φu(λ2x)v(λ2x)

θu(λ1x) + φu(λ2x)

is schur convex in (λ1, λ2). Assuming w(x) = u(x)v
′
(x), and proceeding in the similar way as

before we get

∂Ψ
∂λ1

− ∂Ψ
∂λ2

sign
= x

[(
θφ(v(λ1x) − v(λ2x))(u

′
(λ1x)u(λ2x) + u

′
(λ2x)u(λ1x))

)

+ ((θu(λ1x) + φu(λ2x))(θw(λ1x) − φw(λ2x)))] .
(3.5)

Hence, following the same logic as in Theorem 3.3
(

∂Ψ
∂λ1

− ∂Ψ
∂λ2

)
> 0 as θ ≤ φ, proving the result.

Remark 3.4 The above theorem improves Theorem 3.5 of Zhao and Balakrishnan (2012) in
the sense that the later can be obtained from the former by taking θ1 = θ2 = . . . = θn1 = φ1 =
φ2 = . . . = φn2 = 1 and assuming n1 ≤ n2.

4 Conclusions

Although the concept of majorization started in order to compare the income inequalities,
nowadays one can find application of majorization in different branches of economics, reliability,
engineering and many others. In this paper, we compare the lives of two parallel systems
formed by components having heterogeneous generalized exponentially distributed lifetimes. It
is shown that if the vectors of parameters of the underlying distributions are ordered in the
sense of majorization, then the life of one parallel system will be more than that of the other
in reversed hazard rate order. We also show with the help of counterexample that this result

12



cannot be extended to likelihood ratio (lr) order. However, we have shown that, under certain
restriction, the result can be extended to the lr order. In the process of development of these
two main results of the paper, we have corrected a mistake in the book by Marshall et al. (2011),
and also proved some new results which, we are sure, will enrich the theory of majorization up
to certain extent.
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