
Introduction

In the long history of nonlinear dynamics from Lord 
Rayleigh (1877) to the present, ‘forced vibrations’ has been 
a major thread.2 The synchronization, or entrainment, of 
two oscillators in frequency and in phase, discovered 
famously by Christiaan Huyghens in 1665, is an aspect of 
this thread with many important applications in the sci-
ences: physical, biological and social.3 With the advent of 
the modern qualitative theory of dynamical systems in the 
1960s, an intuitive geometric theory emerged in which the 
phase entrainment of an oscillator may be anticipated.4 As 
this theory applied to chaotic attractors as well as to peri-
odic ones, the synchronization of chaotic attractors was 
predicted and verified experimentally in the 1980.5 And 
thus was born the field of ‘chaos synchronization’. With 
extraordinary prescience, the late Richard Goodwin applied 
these ideas to complex economic systems in his classic of 
1990, Chaotic Economic Dynamics.

Here we extend his ideas to large scale lattices of Rössler 
systems and present preliminary results of computer simu-
lations in which islands (anti-nodes) of synchronization are 
constrained by nodal lines, as in vibrating membranes. 
These results, reminiscent of the dynamics of cardiac  
tissue6, are highly suggestive for economic systems, and 
we end with some speculations on these implications.  
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Research

The evolution of lattice dynamics may be summarized in 
this brief chronology.

●	 1692, physics of the hanging chain (Bernoulli)
●	 1826, spatial economics (Von Thünen)
●	 1930, biological morphogenesis  

(Fisher, Kolmogorov, Turing)
●	 1970, chemical waves (Belousov–Zhabotinsky)
●	 1990, economic networks (Goodwin)

Glossary

We begin with a brief glossary of terms.
‘Complexity’ is an ambiguous term referring to some of 

these ideas: chaos theory, cellular automata, genetic algo-
rithms, networks, system dynamics and complex systems.7 
A ‘dynamical system’ is either:8

●	 a ‘flow’, defined by a vectorfield (a system of auton-
omous ordinary differential equations) defined on a 
state space, S,

●	 a ‘cascade’, defined by a reversible endomorphism 
of S, or

●	 an ‘iteration’, defined by an arbitrary endomorphism 
of S.
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The state space in general is a finite-dimensional 
differentiable manifold, but here we will consider only the 
special case, S ⊂ Rn (cartesian n-space).

A network consists of nodes and directed or undirected 
links. A complex dynamical system comprises a directed 
network together with data: every node contains a dynami-
cal scheme (a dynamical system with control parameters) 
and every directed link connects states at its tail to controls 
at its head.

Rössler Systems

Here we will be concerned with complex dynamical sys-
tems with flow schemes at each node. Especially, the case 

in which the same scheme—for example, the Rössler 
scheme—is attached to each node:9

		    u′ = au + v� (1)
		    v′ = –u – z� (2)
		    z′ = b + (v – c)z� (3)

Following Richard Goodwin, we might set a = b = 0.2, 
so we have a three-dimensional flow scheme at each node 
with a single control parameter, c. The original value for 
the familiar Rössler attractor is c = 5.7. If the control 
parameter, c, increases from zero to 50 or so, a bifurcation 
sequence is observed that resembles somewhat the well-
known behaviour of the logistic family of one-dimensional 
maps. Some special cases are shown in Figure 1.

   

   

   

Figure 1. Dependence of Rössler attractor upon control c. The successive values of c are 1.6, 3.0, 3.9, 4.2, 4.5, 5.7 (the standard 
value) and 7.0. This latter case belongs to a periodic window. The views of these eight cases are looking down from the positive  
z axis. The ninth image is again c = 7.0, but seen from the positive u axis.
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Alternatively, we may fix a = 0.2, c = 5.7 and allow b be 
controlled from outside. In a forced system, a directed  
link will determine the value of b at its head from the state 
(u, v, z) at its tail. And our simplest networks will consist of 
only one or two nodes, each containing a Rössler system 
with identical values of the parameters, a and c, while the 
value of b is controlled.

In the case of one node, the Rössler scheme will have a 
single attractor, either fixed, periodic, or chaotic, depending 
upon the value of the control parameter, c. The bifurcation 
sequence for this scheme is well known: Increasing c from 
zero, we encounter a single attractor, first a point, then a peri-
odic cycle going once around the central point, the so-called 
unit attractor. This cycle then undergoes a period-doubling 
sequence converging to chaos and exhibiting for some inter-
vals, a periodic window. The bifurcation sequence of this 
scheme as b is varied also includes period doubling routes to 
chaos, as well as periodic windows, as shown in Figure 2.10

In the case of two nodes and one link, we have a forced 
Rössler system. These systems may exhibit useful proper-
ties of phase entrainment. In the case of two nodes and two 
links, we have a coupled Rössler system. These systems 
also exhibit phase entrainment.

Goodwin has employed the Rössler scheme to model 
economic units such as factories. In this context, the vari-
ables u and v may represent wages and profits, respectively, 
which cycle roughly periodically like predators and prey, 
while the variable z represents an interactive policy fac-
tor.11 Meanwhile, the control parameter, c, may be manipu-
lated by management or other exogenous factors, changing 
the shape and character of the unique attractor.

Chaos with Periodic Forcing

Consider now an application in which one Rössler scheme, 
representing a bank let’s say, is subject to periodic forcing 
by an exogenous institution such as a government or cen-
tral bank. If the forcing is applied subtly, it will approxi-
mate the near-periodicity of the chaotic attractor and seek 
to stabilize its phase by pushing up in the z-direction as the 
controlled unit approaches its z-peak, advancing its phase, 
and pushing down as the controlled unit passes its peak, 
retarding its phase, The result is better periodic behaviour 
of the forced system. This is the essence of the geometric 
theory of phase entrainment. Goodwin has considered the 
case in which a Rössler scheme is subject to periodic exog-
enous forcing with chaotic results.12 This master/slave situ-
ation may be represented in a conspiracy theory, in which 
some power group, perhaps imaginary like the Bavarian 
Illuminati, is forcing up the interest rates or market prices 
by greedy manipulation. Note that the forcing term 
effectively alters the control parameter b, thus driving the 
system over the cliff of the successive bifurcations shown 
in Figure 2.

Chaos with Chaotic Forcing

We now consider a Rössler scheme forced by another 
Rössler system. Recall that the Rössler attractor is roughly 
a smooth oscillation in the (u, v) plane, accompanied by 
randomly occurring spikes in the z direction. This behav-
iour is similar to that of a Hodgkin—Huxley neuron model, 
with periodic equal spiking replaced by a rough equivalent, 
which is chaotic both in the timing and the strength of the 
spikes. With no connection between two Rössler systems, 
the two (u, v) nearly periodic oscillators will be uncorre-
lated and the spikes as well. But with weak coupling from 
the master z-spike to the b-parameter of the slave system, 
partial synchronization occurs.

In Figure 3 we show the parallel trajectories of the mas-
ter system (orange) and the slave (yellow), drawn in 3D by 
a Net Logo simulation. In Figure 4 we can see the time 
variation of the z coordinate of the master (green) along 
with that of the the slave (blue). Note that stronger spikes 
are frequently in sync, while weaker ones are not.

We may obtain a rough measure of the synchronization 
of the spikes in this figure as follows. Let us set a threshold 
value, 1.0, to define a spike. That is, when the w-coordinate 
of a system exceeds 1.0, we say it is spiking. Now during a 
simulation run, add together all the time intervals of the 
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Figure 2. Dependence of Rössler attractor upon control b

Source:	 Developed by the author.
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Figure 3. Master (yellow) and slave (orange)

master system that it is spiking, s0, and all the time inter-
vals, sb, that both master and slave are spiking and express 
sb/s0 as a percentage. This approximates the correlation of 
the spikes of the two systems. It takes account of the slave 
spikes that are entrained by the master, while ignoring slave 
spikes that are not so entrained. Thus it is more appropriate 
for a forced system than for a mutually coupled system.

In the run of Figure 4, the spike correlation we found 
was 57 per cent, while the same run with no forcing showed 
spike correlation only 7 per cent.

Chaos Synchronization in Networks

Goodwin also considered the global economy as a 
massively complex dynamical network of chaotic nodes. 
In this context, the emergence of a large clique of nodes in 

Figure 4. Rössler forced Rössler, Master (green) and Slave (blue), forcing constant 2.0, showing strong synchronization. 
The simulate time shows is from 1000 to 1150.

spontaneous synchrony, like a school of fish or flock of 
birds, may function as a conspiracy, without any explicit 
manipulation. This possibility, a sort-of pseudoconspiracy, 
actually occurs in computer simulations of complex 
dynamical networks of identical nodes, such as a reaction–
diffusion lattice of Rössler schemes, as given in the 
subsequent section.

Simulation Results

Thanks to the spectacular decline in the cost of massively 
parallel super-computers, we are able to present here the 
result of long simulations of two-dimensional lattices of 
Rössler schemes. These have square arrays of 400 by 400 
nodes, each coupled by diffusion of the z-variable from its 
four nearest neighbours. This means, approximately, that the 
two-dimensional laplacean of z at a given node modulates 
the control parameter b in equation (3) above. The response 
diagram of the Rössler scheme, with b in the range [0, 2], 
is shown in Figure 2. Note that the chaotic attractors with  
b around 0.2 are bracketed by three-periodic windows.

The nodes begin with random initial conditions, chosen 
in the domain, u ∈ [−10, 10], v ∈ [−10, 10], z ∈ [0, 20] and 
all have the same value of the control parameters, a = b = 
0.2 and c = 5.7, in the chaotic regime. Thus, there is no 
master bank manipulating the controls and sync develops 
solely from mathematical cooperation of the policy deci-
sions of the nodes. The diffusion rate in the z direction is 
chosen in the range, D ∈ [0, 5].

This corresponds to coupling the schemes:

u′ = au + v� (4)
v′ = –u – z� (5)
z′ = b + (v – c) z + d� (6)
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where d is now the control parameter, linked to the z values 
of the four nearest neighbours by diffusion. In other words, 
the b parameter is modulated around a base value of 0.2 by 
the diffusion factor, d. The boundary conditions in this 
simulation are periodic, that is, the lattice resides on a torus.

The visualization strategy is to show the instantaneous 
states of the z-value at each node as a colour: from blue 
(at z = 0) to red (at z = 25). Where we see a blue zone, a ring 
or disc for example, we are observing phase synchrony in 
the z variable, the one with the hook, or spike, behaviour. 
The colour code is shown in Figure 5.

We may understand this phase coherence and the vari
ation of synchronous phases across the two-dimensional 
lattice of nodes, by means of Zeeman’s visualization 
strategy.14 We imagine the lattice as a square paper napkin. 
At a given instant in the simulation, the scheme at each 
node has instantaneous values of (u, v, z) and also d. Thus 
we may map the paper napkin into the standard cell, the 
four-space of (u, v, z, d ).

At the start, the article is very crumpled up and posi-
tioned randomly in the cell. As the simulation advances 
step-by-step, the napkin is moved about in the cell and all 
image points are attracted to the locus of the Rössler attrac-
tor in the cell. The colour code lives in the cell, as layers of 
different colour, parameterized by z. As the folded napkin 
image moves about in the cell, the colours it moves through 

are pulled-back to the original lattice and these we see in 
the simulation as a movie.

A single frame of this movie is shown in Figure 6. But 
different blue zones, for example, may be in phase sync 
with phase difference 360 degrees. Thus image points in 
between are pulled around the attractor ring and are stuck 
in phase sync of relative phases between 0 and 360 degrees. 
Our simulations are recorded as movies, each frame repre-
senting an instantaneous state of the entire lattice, one node 
per pixel. Thus a blue node, in a single frame, is frozen in 
an instant of an actual (u, v) nearly periodic motion in the 
(u, v) plane, mostly with low (blue) z. The z value has a 
spike-like behaviour, like a neuron but not as sharp. So the 
blue zones are analogous to the Chladni nodal curves (quiet 
zones, low z) of a vibrating membrane, while the red zones 
are roughly synchronous spikes, analogous to the anti-
nodes of a vibrating membrane.

In the movie there is an apparent near-periodicity of the 
full images. To reveal this we computed the image entropy 
of each frame. This is a measure of image complexity, sim-
ilar to the fractal dimension.15 A plot of the image entropy 
versus time is shown in Figure 7, where time varies from 
500 to 1000.

Figure 6. Single frame, 400 x 400 lattice of Rössler attractors, 
Z-forcing = 4.0

Figure 5. Colour code projected onto a single Rössler 
attractor
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Speculations on the Global Economy 

Our experiments on a 2D lattice of Rössler attractors  
are inspired partly by pure mathematics and partly by  
recent research on the nonlinear dynamics of the human  
heart, using 2D coupled lattices of oscillators.16 Goodwin’s 
suggestion of 1990 to regard the global economy as a com-
plex dynamical system probably requires a neural network 
model with long links, rather than a biological organ model 
like the heart, which has only nearest-neighbour connec-
tions. Nevertheless, we may regard our Rössler lattice as a 
simple first step in the direction of understanding the 
behaviour of the global economy as a complex dynamical 
network of chaotic elements. Along this line, then, we may 
give an economic interpretation to our simulation results.

The chief feature of dynamic behaviour of our lattice is 
that of the propagating red islands of anti-nodal (tight peak 
or spike) synchronization, in a blue sea of nodal (loose 
oscillatory or predator-prey) synchronization. This feature, 
which may look like a golf-course conspiracy, is actually 
of purely mathematic origin. It is an emergent feature of a 
complex dynamical system.

In the human heart, red islands in a blue sea might  
correspond to arrhythmias such as atrial or ventricular 
fibrillation. Recent studies suggest that red islands must 
satisfy certain size restrictions in order to propagate and 
may then trigger the fatal fibrillatory state.17

It is not impossible that models such as this one might 
inform efforts to stabilize, or even to destabilize, the global 
economic network. The present troubles of the global 
economy, especially in the United States and Europe,  

may actually be evidence of a propagating red node, that is, 
an economic fibrillation.

Conclusion

Richard Goodwin foresaw the advent of network econom-
ics in 1990:

The modern economy consists of a great variety of separate 
activities intimately linked, directly or indirectly through mar-
kets, with all or most of the other sector.18

Our simulations of massively complex dynamical sys-
tems composed of the models suggested by Richard 
Goodwin for chaotic economic systems suggest that pseu-
doconspiracies may develop from mathematical reasons 
alone. Further, instabilities of our global economic system 
may be better understood from the further study of these 
Goodwin networks through extensive simulations. We plan 
to pursue this direction in future work.
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Notes
  1.	 Submitted to the IIM Kozhikode Society & Management 

Review.
  2.	 The highlights are described in Abraham and Shaw (1992,  

ch. 4).
  3.	 See (Abraham & Shaw, 1992, ch. 5) and (Strogatz, 2003, ch. 4).
  4.	 See (Abraham, 1984).
  5.	 Personal communication via Doyne Farmer (1986), reported 

in Stone (1992).
  6.	 See Xie et al. (2007), Sato et al. (2009) and references 

therein.
  7.	 An excellent text is Mitchell (2009).
  8.	 See, for example, Abraham and Shaw (1992) and Abraham 

(1997).
  9.	 Here we have adopted the notation of Goodwin (1990, pp. 48, 

66), but write z for his k.
10.	 From Wikipedia entry for Rössler attractor.
11.	 Goodwin (1990) p. 87.
12.	 Goodwin (1990, final chapter).
13.	 Zeeman (1977, p. 117).
14.	 See Abraham (2012) for the definition.

Figure 7. Image entropy of frames of the simulation movie, run 
h6
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15.	 For example, see Sato et al. (2009).
16.	 See Xie et al. (2007) and Sato et al. (2009, p. 2985).
17.	 Final page, Goodwin (1990, p. 130).
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