

Working Paper

IIMK/WPS/218/ITS/2017/02

January 2017

effSAMWMIX: An efficient Stochastic Multi-Armed Bandit

Algorithm based on a Simulated Annealing with
Multiplicative Weights

Boby Chaitanya Villari1
Mohammed Shahid Abdulla2

1 Doctoral Student, IT & Systems Area, Indian Institute of Management Kozhikode, IIMK Campus P.O, Kerala
– 673570, India, E-mail: Bobycv06fpm@iimk.ac.in
2 Associate Professor, IT & Systems Area, Indian Institute of Management Kozhikode, IIMK Campus P.O,
Kerala – 673570, India, E-mail: shahid@iimk.ac.in, Phone: +91 - 495 - 2809254

1

mailto:shahid@iimk.ac.in

IIMK WORKING PAPER

effSAMWMIX : An efficient Stochastic Multi-Armed Bandit Algorithm based on a
Simulated Annealing with Multiplicative Weights

Boby Chaitanya Villari
Doctoral Student of IT & Systems Area, IIM Kozhikode

Mohammed Shahid Abdulla
Associate Professor of IT & Systems Area, IIM Kozhikode

Abstract—SAMWMIX, a Stochastic Multi-Armed
Bandit(SMAB) which obtains a 𝑶𝑶(𝒍𝒍𝒍𝒍𝒍𝒍 T) where T being the
number of steps in the time horizon, is proposed in the literature .
A blind-SAMWMIX which incorporates an input parameter
,which has better empirical performance but obtains a regret of
the order 𝑶𝑶(𝒍𝒍𝒍𝒍𝒈𝒈𝟏𝟏+𝟐𝟐𝜶𝜶 𝑻𝑻).Current work proposes an efficient
version of SAMWMIX which not only obtains a regret of 𝑶𝑶(𝒍𝒍𝒍𝒍𝒍𝒍
K) but also exults a better performance. A proof for the same is
given in this work. The proposed effSAMWMIX algorithm is
compared with KL-UCB and Thompson Sampling(TS) algorithms
over rewards which follow distributions like Exponential, Poisson,
Bernoulli, Triangular, Truncated Normal distribution and a
synthetic distribution designed to stress test SMAB algorithms
with closely spaced reward means. It is shown that effSAMWMIX
performs better than both KL-UCB & TS in both regret
performance and execution time.

Keywords—stochastic multi-armed bandit;stochastic processes;
reward distributions; optimization;

I. INTRODUCTION

Decision making under uncertainty is a challenge in a
turbulent environment. Partial feedback from the environment
leads to incomplete information giving rise to uncertainty. The
agent has to learn sequentially (i.e. in many iterations) by relying
only on reinforcements with partial feedbacks obtained due to
the previous decision. Thus, the decision maker should explore
the entire set of available decision choices in an attempt to
improve the knowledge about the problem’s current solution and
exploit the currently available knowledge on the problem's
solution choices to choose the best choice. Multi-Armed Bandits
(MAB), a family of Machine Learning algorithms, are tailor-
made to handle such explore-exploit problem situations[1]. The
MAB problem is a sequential decision-making task where the
decision maker (agent) decides to choose (pull), at each time
step, an action (arm) from a pool of M actions - based on some
informed choosing strategy (policy). With the aim of
maximizing the average payoff from this exercise in the long-
run, the agent examines these payoffs to continuously improve
the policy and decide on the future selection of arms.
Alternatively, the same can be seen as a regret minimization
problem where the regret is the difference between rewards of

an oracle policy that chooses the best arm in every time step and
the rewards of the learned MAB policy. It is known that in T
pulls, 𝑂𝑂(𝑙𝑙𝑙𝑙𝑙𝑙 𝑇𝑇) regret is the lowest possible regret an MAB
algorithm can achieve and thus the desirable target.

The Upper Confidence Bound (UCB) class of MAB
algorithms, both in the stochastic and contextual settings, is
considered a benchmark. However, in both settings, UCB
requires a ‘pick the best arm’ behavior, which is performed by
explicitly picking the maximum among the N arms. The metrics
associated with each arm will, however, change from pull to
pull. This makes the per-step complexity of the UCB class of
algorithms 𝑂𝑂(𝑇𝑇). The proposed SMAB algorithm –
SAMWMIX - differs in avoiding maximization and instead
picking a ‘Soft-Maximum’ via a Boltzmann Exploration
structure. Since the ‘Soft Maximum’ is encoded inside a
probability vector, the generation of an arm’s index using this
probability vector contributes to a 𝑂𝑂(𝑙𝑙𝑙𝑙𝑙𝑙 𝑇𝑇) complexity – which
makes the algorithm very competitive if T happens to be large.
This advantage is over-and-above the improved precision of
SAMWMIX and its variants due to a theoretical result[2] that
bounds the ‘finite sample regret’ (i.e. the probability of choosing
the wrong arm in each pull).

In a previous work, the authors proposed Gamma
Optimized SAMWMIX(GO-SAMWMIX) [3] with a simple
heuristic improvement over the original .The bounds on this
algorithm largely remain the same as that of original but GO-
SAMWMIX is reported to have better effectiveness than its
predecessor in terms of the number of times the best of the
choices are chosen by the algorithm over a given time horizon
𝑡𝑡.This work proposes an efficient version of SAMWMIX which
not only obtains a regret of 𝑂𝑂(𝑙𝑙𝑙𝑙𝑙𝑙 T) but also has a better
performance in terms of efficiency i.e. the number of times the
best action is pulled and thus lowering the regret or maximizing
the cumulative reward over the horizon 𝑡𝑡.This work compares
the performance of effSAMWMIX vis-à-vis that of the state-
of-the-art KL-UCB algorithm [4] and Thompson Sampling(TS)
algorithm[5, 6] which is seen to gain prominence in this decade.
The tests are done over rewards which follow distributions like
Exponential, Poisson, Bernoulli, Triangular and Truncated

2

Normal distribution’s and a synthetic distribution designed to
stress test the algorithm with closely spaced reward means 𝜇𝜇.
(see section IV). effSAMWMIX has achieved a superior
performance as detailed further in this paper.

II. MULTI-ARMED BANDITS- A REVIEW

A. The Multi-Armed Bandit(MAB) problem in brief
A MAB problem is a sequential decision-making problem

with discrete time steps or horizon 𝑇𝑇.The agent chooses an
action in every time step from a set of 𝑁𝑁 possible actions. Then
the environment will provide the reward pertaining to action 𝑖𝑖 at
time step 𝑡𝑡 < 𝑇𝑇. Thus process continues in the following way.

1.𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐼𝐼𝑡𝑡 & 𝑡𝑡ℎ𝑢𝑢𝑢𝑢 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡
2.𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡ℎ𝑒𝑒 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑥𝑥𝑖𝑖,𝑡𝑡 𝜖𝜖 [0,1]𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 𝜖𝜖 {1,𝑇𝑇} 𝑎𝑎𝑎𝑎𝑎𝑎
 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑥𝑥𝑖𝑖,𝑡𝑡
3.𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑡𝑡ℎ𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝑥𝑥𝑖𝑖,𝑡𝑡, 𝑡𝑡ℎ𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑡𝑡ℎ𝑒𝑒

 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖. 𝑒𝑒.�𝑥𝑥𝐼𝐼𝑡𝑡,𝑡𝑡
𝑇𝑇

 𝑏𝑏𝑏𝑏 𝑡𝑡ℎ𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑇𝑇
Fig.1. The MAB problem

For a general MAB, it is to be noted that the rewards could
follow any distribution but are to be bounded by [0,1].An agent
is tested to achieve a highest cumulative reward or lowest
cumulative regret to be graded better. Imposing additional
assumption on the generalized MAB problem will lead to a
variant, of our interest, called the Stochastic Multi-Armed
Bandit (SMAB).

B. The Stochastic Multi-Armed Bandit (SMAB)
In SMAB settings it is assumed that the reward 𝑥𝑥𝑡𝑡 follows a

fixed distribution 𝑣𝑣𝑖𝑖𝑜𝑜𝑜𝑜 [0,1] unknown to the agent. The reward
of each action 𝑖𝑖 is independent of the rewards it obtained from
any other time horizon (or pull) and independent of rewards of
other actions [7].This means that the rewards �𝑋𝑋𝑡𝑡𝑖𝑖�𝑖𝑖𝑖𝑖𝑖𝑖 are assumed to
be i.i.d from 𝑣𝑣𝑖𝑖 and all the rewards of 𝐾𝐾 choices(arms) are also
independent of each other.

In addition to Stochastic settings, an adversarial setting[8] that
exists for MABs which is not the setting for the algorithms studied in
this work.

C. Performance Measures for an SMAB
In an SMAB (also for any MAB) setting, an algorithm is

evaluated based on the cumulative reward or the cumulative
regret obtained due to the agent’s decision-making processes
over the time horizon. , regret ℛ is a measure of how far the
performance of contended algorithm is compared to an oracle
policy that knows how to pick the best possible action in every
each time step 𝑖𝑖 in horizon ℋ.For all CMABs, regret ℛ is a
central conceptual variable to be considered and concentrated
towards obtaining a logarithmically changing regret over time
horizon. During experimentation the regret ℛ� is plotted against
horizon ℋ so as to observe and compare with algorithms
reported or contented against.

An expected payoff regret or simply expected regret ℛ� is
defined as follows

ℛ� = �� max
𝑖𝑖=1,2,…N

 𝐸𝐸�𝑋𝑋𝑡𝑡𝑖𝑖�� −�𝑋𝑋𝑡𝑡
𝐼𝐼𝑡𝑡

𝐻𝐻

𝑡𝑡=1

𝑇𝑇

𝑡𝑡=1

Thus ℛ� is the difference between the payoff of an optimal
arm as selected by an oracle policy (in expectation over the
arm’s distribution) and the actual payoff obtained by the MAB
policy in contention. Since in real time environment, the oracle
policy might not be known in advance, ℛ� happens to have
significance only in simulated environments where the testing is
done to evaluate the algorithm’s performance.

III. THE 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ALGORITHM
The effSAMWMIX algorithm is based on SAMWMIX[2]

which indeed is based on a variant of simulated annealing called
Simulated Annealing with Multiplicative Weights(SAMW).The
regret is calculated as given below. As mentioned earlier, the
SAMWMIX and its variants use a ‘Soft-Maximum’ via a
Boltzmann Exploration structure. Since the ‘Soft Maximum’ is
encoded inside a probability vector, the generation of an arm’s
index using this probability vector contributes to a 𝑂𝑂(𝑙𝑙𝑙𝑙𝑙𝑙 𝐾𝐾)
complexity – which makes the algorithm very competitive if 𝐾𝐾,
the number of available arms, happens to be large. This binds
the finite sample regret which is the probability of choosing a
wrong action in each pull.

The effSAMWMIX algorithm chooses the arms by
calculating and maintaining a vector 𝜙𝜙𝑡𝑡

𝑗𝑗 where 𝑗𝑗𝑗𝑗[1,𝐾𝐾] are
the number of arms available and 𝑡𝑡𝑡𝑡[1,𝑇𝑇] is the time
horizon. The 𝜙𝜙𝑡𝑡

𝑗𝑗 is given below.

𝜙𝜙k+1
𝑗𝑗 = (1 − 𝛾𝛾𝑘𝑘)

𝜙𝜙𝑘𝑘
𝑗𝑗 𝑒𝑒∑𝜂𝜂𝑡𝑡𝑋𝑋𝑘𝑘

𝚥𝚥 �

∑ 𝜙𝜙𝑘𝑘
𝑗𝑗 𝑒𝑒∑𝜂𝜂𝑡𝑡𝑋𝑋𝑘𝑘

𝚥𝚥 �𝑁𝑁
𝑗𝑗=1

 +
𝛾𝛾𝑘𝑘
𝑁𝑁

 (1)

(1) is similar to (10) of [2] since it represents a Boltzmann
exploration schema. The learning component which is the step-
size 𝛾𝛾𝑡𝑡 and the inverse temperature parameter is given below.

𝛾𝛾𝑘𝑘 =
𝑁𝑁�4 + (𝑑𝑑 + 𝑑𝑑𝑘𝑘)�

𝑘𝑘(𝑑𝑑 + 𝑑𝑑𝑘𝑘)2 − (𝑑𝑑 + 𝑑𝑑𝑘𝑘 − 2𝑑𝑑2) (2)

𝜂𝜂𝑘𝑘 =
1

𝑁𝑁
𝛾𝛾𝑘𝑘

+ 1
𝑙𝑙𝑙𝑙𝑙𝑙�

1 + 𝑑𝑑 � 𝑛𝑛𝛾𝛾𝑘𝑘
+ 1�

2𝑁𝑁
𝛾𝛾𝑘𝑘

− 𝑑𝑑2
� (3)

The construction of proof is based on the definition of an
expected regret which is defined as the expected cumulative loss
incurred due to not playing the best possible arm 𝑎𝑎𝑡𝑡∗ during the
iteration 𝑡𝑡 where𝑡𝑡𝑡𝑡[1,𝑇𝑇].The calculation of the maximum
expected regret is put below.

Maximum Regret of MAB = 𝑀𝑀𝑀𝑀𝑀𝑀
1≤𝑗𝑗≤𝑁𝑁

 𝐸𝐸[∑ (𝑋𝑋𝑡𝑡𝑖𝑖 − 𝑋𝑋𝑡𝑡
𝐼𝐼𝑡𝑡)]𝑇𝑇

𝑡𝑡=1

 = 𝐸𝐸[�(𝑋𝑋𝑡𝑡1 − 𝑋𝑋𝑡𝑡
𝐼𝐼𝑡𝑡)]

𝑇𝑇

𝑡𝑡=1

 = ��𝐸𝐸�𝑋𝑋𝑡𝑡1 − 𝑋𝑋𝑡𝑡
𝐼𝐼𝑡𝑡��

𝑇𝑇

𝑡𝑡=1

 = �𝐸𝐸�𝐸𝐸�𝑋𝑋𝑡𝑡1 − 𝑋𝑋𝑡𝑡
𝐼𝐼𝑡𝑡� / ℱ𝑡𝑡−1�

𝑇𝑇

𝑡𝑡=1

3

 = �𝐸𝐸��Δj𝜙𝜙𝑡𝑡
𝑗𝑗

𝑁𝑁

𝑗𝑗=2

�
𝑇𝑇

𝑡𝑡=1

 = ���Δj𝐸𝐸[𝜙𝜙𝑡𝑡
𝑗𝑗]

𝑁𝑁

𝑗𝑗=2

�
𝑇𝑇

𝑡𝑡=1

Figure 2. Calculation of Maximum Expected Regret

The proof for logarithmic regret is similar to that of

SAMWMIX and thus can be documented similarly. Since
∑ (∆𝑖𝑖/𝑝𝑝𝑇𝑇
𝑝𝑝=1) = log (𝑇𝑇), obtaining an upper bound of 𝑂𝑂 �1

𝑇𝑇
� on

expectation 𝐸𝐸{𝜙𝜙𝑡𝑡𝑖𝑖} for any suboptimal arm implies a logarithmic
regret in effSAMWMIX. From the following set of equations,
we derive the value of 𝛾𝛾𝑘𝑘 which essentially differentiates the
effSAMWMIX from SAMWMIX.

By altering the Boltzmann exploration schema of

SAMWMIX from

𝜙𝜙𝑡𝑡+1
𝑗𝑗 = (1 − 𝛾𝛾𝑡𝑡)

𝜙𝜙𝑡𝑡
𝑗𝑗 𝑒𝑒∑𝜂𝜂𝑡𝑡𝑋𝑋𝑡𝑡

𝑗𝑗 �

∑ 𝜙𝜙𝑡𝑡
𝑗𝑗 𝑒𝑒∑𝜂𝜂𝑡𝑡𝑋𝑋𝑡𝑡

𝑗𝑗 �𝑁𝑁
𝑗𝑗=1

 +
𝛾𝛾𝑡𝑡
𝑁𝑁

which is (10) of [2] to that of effSAMWMIX which is

 𝜙𝜙𝑡𝑡+1
𝑗𝑗 = (1 − 𝛾𝛾𝑡𝑡) 𝑒𝑒∑𝜂𝜂𝑡𝑡𝑋𝑋𝑡𝑡

𝚥𝚥 �

∑ 𝑒𝑒∑𝜂𝜂𝑡𝑡𝑋𝑋𝑡𝑡
𝚥𝚥 �

𝑁𝑁
𝑗𝑗=1

 + 𝛾𝛾𝑡𝑡
𝑁𝑁

where 𝜂𝜂𝑘𝑘 = 1
𝑁𝑁
𝛾𝛾𝑘𝑘
+1
𝑙𝑙𝑙𝑙𝑙𝑙 �

1+𝑑𝑑� 𝑛𝑛𝛾𝛾𝑘𝑘
+1�

2𝑁𝑁
𝛾𝛾𝑘𝑘
−𝑑𝑑2 �

if 𝐾𝐾𝑝𝑝 = 𝑑𝑑,𝐶𝐶𝑝𝑝 = 𝑁𝑁

𝛾𝛾𝑝𝑝
+ 1 ,𝜎𝜎𝑝𝑝2 = 2 ∗ 𝑁𝑁

𝛾𝛾𝑝𝑝
− 𝑑𝑑2, 𝑡𝑡ℎ𝑒𝑒𝑒𝑒

𝜂𝜂𝑝𝑝 =
1
𝐶𝐶𝑝𝑝

log�
1 + 𝐶𝐶𝑝𝑝𝐾𝐾𝑝𝑝

𝜎𝜎𝑝𝑝2
�

The regret is defined as ℛ� = ∑ �∑ Δj𝐸𝐸[𝜙𝜙𝑡𝑡
𝑗𝑗]𝑁𝑁

𝑗𝑗=2 �𝑇𝑇
𝑡𝑡=1

But 𝜙𝜙𝑡𝑡+1
𝑗𝑗 = (1 − 𝛾𝛾𝑡𝑡) 𝑒𝑒∑𝜂𝜂𝑡𝑡𝑋𝑋𝑡𝑡

𝚥𝚥 �

∑ 𝑒𝑒∑𝜂𝜂𝑡𝑡𝑋𝑋𝑡𝑡
𝚥𝚥 �

𝑁𝑁
𝑗𝑗=1

 + 𝛾𝛾𝑡𝑡
𝑁𝑁

Thus ℛ� = ∑ �∑ Δ𝑗𝑗𝐸𝐸 ��1−𝛾𝛾𝑡𝑡� 𝑒𝑒∑𝜂𝜂𝑡𝑡𝑋𝑋𝑡𝑡
𝑗𝑗
�

∑ 𝑒𝑒∑𝜂𝜂𝑡𝑡𝑋𝑋𝑡𝑡
𝑗𝑗
�

𝑁𝑁
𝑗𝑗=1

+ 𝛾𝛾𝑡𝑡
𝑁𝑁

�𝑁𝑁

𝑗𝑗=2 �𝑇𝑇
𝑡𝑡=1

 = ���Δ𝑗𝑗 𝐸𝐸 �(1− 𝛾𝛾𝑡𝑡)
𝑒𝑒∑𝜂𝜂𝑡𝑡𝑋𝑋𝑡𝑡

𝚥𝚥 �

∑ 𝑒𝑒∑𝜂𝜂𝑡𝑡𝑋𝑋𝑡𝑡
𝚥𝚥 �𝑁𝑁

𝑗𝑗=1

 �
𝑁𝑁

𝑗𝑗=2

�
𝑇𝑇

𝑡𝑡=1

+
𝛾𝛾𝑡𝑡
𝑁𝑁

Since 𝑒𝑒∑𝜂𝜂1𝑋𝑋𝑡𝑡1 � ≤ ∑ 𝑒𝑒∑𝜂𝜂𝑡𝑡𝑋𝑋𝑡𝑡
𝚥𝚥 �𝑁𝑁

𝑗𝑗=1 ,the following equation
(4) holds true.

(1 − 𝛾𝛾𝑡𝑡)
𝑒𝑒∑𝜂𝜂𝑡𝑡𝑋𝑋𝑡𝑡

𝚥𝚥 �

∑ 𝑒𝑒∑𝜂𝜂𝑡𝑡𝑋𝑋𝑡𝑡
𝚥𝚥 �𝑁𝑁

𝑗𝑗=1

+
𝛾𝛾𝑡𝑡
𝑁𝑁

 ≤ (1 − 𝛾𝛾𝑡𝑡)
𝑒𝑒∑𝜂𝜂𝑡𝑡𝑋𝑋𝑡𝑡

𝚥𝚥 �

𝑒𝑒∑𝜂𝜂1𝑋𝑋𝑡𝑡1 � +
𝛾𝛾𝑡𝑡
𝑁𝑁

 (4)

Considering the following inequality

 𝑒𝑒∑ 𝜂𝜂𝑘𝑘𝑋𝑋𝑘𝑘
𝚥𝚥 �𝐾𝐾−1

𝑘𝑘=1 ∗ 𝑒𝑒𝜂𝜂𝑘𝑘(𝑑𝑑𝑘𝑘)∗�𝑋𝑋𝑡𝑡
𝚥𝚥 �+𝑑𝑑𝑘𝑘� ≤ ∑j=1

N 𝑒𝑒∑ 𝜂𝜂𝑘𝑘(𝑑𝑑𝑘𝑘)𝑋𝑋𝑘𝑘
𝚥𝚥 �𝐾𝐾

𝑘𝑘=1 (5)
be true for every 𝑖𝑖 including 𝑖𝑖 = 1 𝑡𝑡𝑡𝑡 𝑁𝑁 and if 𝑎𝑎𝑘𝑘 is the winner
arm in 𝑘𝑘𝑡𝑡ℎiteration, (5) can be written as follows

𝑒𝑒∑ 𝜂𝜂𝑘𝑘𝑋𝑋𝑘𝑘
𝑎𝑎𝑘𝑘 �𝐾𝐾−1

𝑘𝑘=1 ∗ 𝑒𝑒𝜂𝜂𝑘𝑘(𝑑𝑑𝑘𝑘)∗�𝑋𝑋𝑡𝑡
𝑎𝑎𝑘𝑘 �+𝑑𝑑𝑘𝑘� ≤ ∑j=1

N 𝑒𝑒∑ 𝜂𝜂𝑘𝑘(𝑑𝑑𝑘𝑘)𝑋𝑋𝑘𝑘
𝚥𝚥 �𝐾𝐾

𝑘𝑘=1 (6)

Fetching 𝜂𝜂𝑝𝑝 from SAMWMIX [2]

𝜂𝜂𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 1
𝐶𝐶𝑝𝑝

log �1+𝐶𝐶𝑝𝑝𝐾𝐾𝑝𝑝
𝜎𝜎𝑝𝑝2

� where 𝑘𝑘𝑝𝑝 = 𝑑𝑑

𝜂𝜂𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
1
𝐶𝐶𝑝𝑝

log�
1 + 𝐶𝐶𝑝𝑝𝑑𝑑
𝜎𝜎𝑝𝑝2

�

Analogous to SAMWMIX we define 𝜂𝜂𝑝𝑝

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 as

𝜂𝜂𝑝𝑝
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 1

𝐶𝐶𝑝𝑝
log �1+𝐶𝐶𝑝𝑝�𝑑𝑑+𝑑𝑑𝑝𝑝�

𝜎𝜎𝑝𝑝2
� (7)

Getting the notations back incorporating 𝑑𝑑𝑘𝑘, 𝑖𝑖. 𝑒𝑒.

𝜂𝜂𝑝𝑝
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝜂𝜂𝑝𝑝�𝑑𝑑𝑝𝑝� , 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑏𝑏𝑏𝑏 𝑑𝑑𝑘𝑘

𝜂𝜂𝑝𝑝�𝑑𝑑𝑝𝑝� =
1
𝐶𝐶𝑝𝑝

log�
1 + 𝐶𝐶𝑝𝑝�𝑑𝑑 + 𝑑𝑑𝑝𝑝�

𝜎𝜎𝑝𝑝2
�

𝜙𝜙𝑝𝑝+1
𝑗𝑗 = �1 − 𝛾𝛾𝑝𝑝� 𝑒𝑒

∑
−𝐾𝐾𝑝𝑝2

2𝜎𝜎2+𝐾𝐾𝑝𝑝𝐶𝐶𝑝𝑝
𝐾𝐾
𝑝𝑝=1 +

𝛾𝛾𝑡𝑡
𝑁𝑁

To obtain logarithmic regret, the summation term in

exponent should be a logarithmically increasing entity. Hence
we equate it to log𝐾𝐾

�−
𝐾𝐾𝑝𝑝2

2𝜎𝜎2 + 𝐾𝐾𝑝𝑝𝐶𝐶𝑝𝑝

𝐾𝐾

𝑝𝑝=1

= − log𝐾𝐾

which implies that
𝐾𝐾𝑝𝑝2

2𝜎𝜎2+𝐾𝐾𝑝𝑝𝐶𝐶𝑝𝑝
= 1

𝑘𝑘
 (8)

Since 𝐾𝐾𝑝𝑝 = (𝑑𝑑 + 𝑑𝑑𝑘𝑘),equation (8) is rewritten as

(𝑑𝑑 + 𝑑𝑑𝑘𝑘)2

2(2𝑁𝑁
𝛾𝛾𝑘𝑘

− 𝑑𝑑2) + (𝑑𝑑 + 𝑑𝑑𝑘𝑘)(𝑁𝑁𝛾𝛾𝑘𝑘
+ 1)

=
1
𝑘𝑘

Thus 𝛾𝛾𝑘𝑘 = 𝑁𝑁�4+(𝑑𝑑+𝑑𝑑𝑘𝑘)�
𝑘𝑘(𝑑𝑑+𝑑𝑑𝑘𝑘)2−(𝑑𝑑+𝑑𝑑𝑘𝑘−2𝑑𝑑2)

Thus an exploration parameter 𝛾𝛾𝑘𝑘 = 𝑁𝑁�4+(𝑑𝑑+𝑑𝑑𝑘𝑘)�

𝑘𝑘(𝑑𝑑+𝑑𝑑𝑘𝑘)2−(𝑑𝑑+𝑑𝑑𝑘𝑘−2𝑑𝑑2)

will aid effSAMWMIX in achieving a logarithmic regret log𝑇𝑇
over the horizon T. The pseudocode for effSAMWMIX
algorithm is put below

4

Algorithm 1 effSAMWMIX SMAB algorithm
Input : Rewards Vector 𝐺𝐺𝑡𝑡,set of Arms 𝑁𝑁,number of rounds 𝑇𝑇
1. Using 𝐺𝐺𝑡𝑡 Calculate 𝑑𝑑=min ∆(𝜇𝜇1, 𝜇𝜇2 … . 𝜇𝜇𝑁𝑁) where 𝜇𝜇𝑖𝑖 is the

reward mean of Arm 𝑖𝑖.
2. Calculate

a. 𝐶𝐶0 = 𝑁𝑁 + 1; 𝜎𝜎2 = 2 ∗ 𝑁𝑁;
b. 𝜂𝜂0 = 1

𝐶𝐶0
log �1+𝐶𝐶𝑝𝑝∗𝑑𝑑

𝜎𝜎2
�

c. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = ((4 + 𝑑𝑑) ∗ 𝑁𝑁 + 𝑑𝑑)/𝑑𝑑2
3. 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, . . . ,𝑁𝑁 𝑑𝑑𝑑𝑑

a. Obtain reward 𝑋𝑋𝑡𝑡=𝑖𝑖𝑖𝑖

b. Initialize 𝜙𝜙𝑡𝑡𝑖𝑖 = 𝜂𝜂0 ∗ �
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑁𝑁
� ∗ (𝑋𝑋𝑡𝑡=𝑖𝑖

𝑖𝑖

1
𝑁𝑁

)

c. Initialize pull count for 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑖𝑖 𝑎𝑎𝑎𝑎 𝑝𝑝𝑖𝑖=1
4. 𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 = (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 1 + 𝑁𝑁), … , (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑇𝑇)𝑑𝑑𝑑𝑑

a. Obtain random probability 𝑟𝑟
b. Choose an arm 𝑖𝑖 as winner if ∑𝜙𝜙𝑡𝑡

𝑖𝑖 > 𝑟𝑟 and store

reward 𝐺𝐺𝑡𝑡−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 = 𝑎𝑎𝑡𝑡∗ and normalize the reward
using its probability 𝑋𝑋�=𝑎𝑎𝑡𝑡∗/𝜙𝜙𝑡𝑡𝑖𝑖

c. Update 𝑝𝑝𝑖𝑖 = 𝑝𝑝𝑖𝑖 + 1
d. 𝑓𝑓𝑓𝑓𝑓𝑓 𝑑𝑑𝑡𝑡 = 1, … , 𝑡𝑡−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑇𝑇−𝑁𝑁
𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑑𝑑𝑑𝑑

i. Calculate 𝑘𝑘𝑡𝑡 = 𝑑𝑑 + 𝑑𝑑𝑡𝑡;
ii. 𝛾𝛾𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = ((4 + 𝑘𝑘𝑡𝑡) ∗ 𝑁𝑁 + 𝑘𝑘𝑡𝑡)/(𝑡𝑡 ∗ 𝑘𝑘𝑡𝑡2)

iii. 𝐶𝐶𝑡𝑡 = � 𝑁𝑁
𝛾𝛾𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

� + 1 and 𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
2 = 2 ∗ 𝑁𝑁/𝛾𝛾𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

iv. 𝜂𝜂𝑡𝑡 = 1
𝐶𝐶𝑡𝑡

log �1+𝐶𝐶𝑡𝑡∗𝑘𝑘𝑡𝑡
𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
2 �

v. ∑𝜙𝜙𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑖𝑖 = ∑𝜙𝜙𝑡𝑡

𝑖𝑖 + 𝑒𝑒∑𝜂𝜂𝑡𝑡𝑋𝑋𝑡𝑡
𝑖𝑖 �

vi. If 𝑒𝑒∑𝜂𝜂𝑡𝑡∗(𝑑𝑑𝑡𝑡∗ 𝑋𝑋𝑡𝑡
𝚤𝚤) � + 𝜂𝜂𝑡𝑡∗(𝑑𝑑𝑡𝑡∗ 𝑋𝑋𝑡𝑡

𝑎𝑎𝚤𝚤) �
 > ∑𝜙𝜙𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑖𝑖 then
assign 𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑑𝑑𝑡𝑡 − 𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

e. Assign
i. 𝐾𝐾𝑡𝑡 = 𝑑𝑑𝑡𝑡 + 𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

ii. 𝛾𝛾𝑡𝑡 = ((4 + 𝑘𝑘𝑡𝑡) ∗ 𝑁𝑁 + 𝑘𝑘𝑡𝑡)/(𝑡𝑡 ∗ 𝑘𝑘𝑡𝑡2)
iii. 𝐶𝐶𝑡𝑡 = � 𝑁𝑁

𝛾𝛾𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
�+ 1 and 𝜎𝜎𝑡𝑡2 = 2 ∗ 𝑁𝑁/𝛾𝛾𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

iv. 𝜂𝜂𝑡𝑡 = 1
𝐶𝐶𝑡𝑡

log �1+𝐶𝐶𝑡𝑡𝐾𝐾𝑡𝑡
𝜎𝜎𝑡𝑡
2 �

f. Now update 𝜙𝜙𝑡𝑡+1
𝑗𝑗 using (1) which is

 𝜙𝜙𝑡𝑡+1
𝑗𝑗 = (1 − 𝛾𝛾𝑡𝑡) 𝑒𝑒∑𝜂𝜂𝑡𝑡𝑋𝑋𝑡𝑡

𝚥𝚥 �

∑ 𝑒𝑒∑𝜂𝜂𝑡𝑡𝑋𝑋𝑡𝑡
𝚥𝚥 �

𝑁𝑁
𝑗𝑗=1

 + 𝛾𝛾𝑡𝑡
𝑁𝑁

Output : 𝜙𝜙 vector

IV. EMPIRICAL EVALUATION OF 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
effSAMWMIX is currently being compared to the

performance of KL-UCB and TS. We chose KL-UCB for that it
is prominently cited and compared to in MAB literature.
Similarly, TS is gaining prominence[9] in the scientific
fraternity in this decade. Also, effSAMWMIX has performed
better than its predecessors GO-SAMWMIXM and SAMWMIX
which in turn has as superior performance over UCB1 algorithm.
This work reports the performance of effSAMWMIX vis-à-vis
to that of KL-UCB and TS over the following reward
distributions. The main purpose of these numerical experiments
using various reward distributions is to compare the

performance in terms of cumulated regret and the number of
times the arm with the best mean reward (best arm henceforth)
is pulled.

A. Customized Synthetic Distribution (CuSyn)
It is known that the mean reward of any arm influences the

decision making of an SMAB. The closer the mean rewards of
the available arms, the difficult it should be for an SMAB
algorithm to latch on to the best arm for that iteration. A
Customized Synthetic Distribution (CuSyn) is designed with an
input parameter that allows distributing the rewards of the arms
so that the minimum reward mean’s difference between any two
arms is controlled. For example, using 0.1 as a parameter, the
arms’ reward distributions will be placed so that the closest of
the arms will have their reward means differing only by 10%.
This ensures control over the closeness of the arms and allows
for stress testing the algorithm.

B. A few other Reward distributions
Taking clues from[10], reward distributions of the arms are

set so that their means are in an exponential distribution or a
Bernoulli distribution. The algorithms are tested with arms that
follow a Triangular Distribution [11] and a Normal distribution
truncated to be bounded between [0,1] (Truncated Normal
Distribution henceforth). The results of the numerical
experiments are put below.

C. Design of the Experiment
Numerical experiments are performed on effSAMWMIX,

KL-UCB and Thompson Sampling(TS) algorithms using the
computational software package MATLAB. All the
distributions are to have rewards 𝑥𝑥�𝜖𝜖(0,1) and the rewards are
i.i.d for all the five arms (𝐾𝐾 = 5) in consideration. The time
horizon is set to be 2000 pulls (𝑇𝑇 = 2000) and each run of the
code is called an experiment. 100 such experiments are
conducted and the results are averaged to remove any
randomness in the results. The results are put below when the
rewards followed each of the distributions named below.

TABLE I. MEASURED CPU TIME FOR ALGORITHMS.

CPU Time in
milliseconds for

each rewards
Distribution

Algorithm (time in milliseconds)

effSAMWMIX KL-UCB Thompson
Sampling

CuSyn 66.6875 199.6875 363.4531

Triangular 57.9844 195.9063 343.4531

Truncated Normal 65.2031 201.8594 357.6094

Bernoulli 66.5469 196.2344 353.9844

Poisson 65.2656 201.1719 360.0156

Exponential 67.5313 200.5156 360.5313

1) Customized Synthetic(CuSyn) Distribution
The cumulative regret accumulated by effSAMWMIX is the
lowest as shown in Fig.1. effSAMWMIX has chosen the best

5

possible arm the most number of times (see Fig.2.) and thus
aggregated to a lower regret compared to KL-UCB and TS.

Fig. 1. Comparison of cumulative regrets when the rewards followed a

Customized Synthetic Distribution.

 Also, the average time taken, to run an experiment with
effSAMWMIX is about 67millseconds which is the lowest (See
Table.1). Thus effSAMWMIX is both effective (lower regret)
and efficient (lower computation time) of the three algorithms.

Fig. 2. Comparison of best arm’s Pull Count when the rewards followed a

Customized Synthetic Distribution.

2) Triangular Distribution

effSAMWMIX performed better than the other two
algorithms both in terms of efficiency and effectiveness. The
cumulative regret accumulated by effSAMWMIX is the lowest
as shown in Fig.3.

Fig. 3. Comparison of cumulative regrets when the rewards followed a

Triangular Distribution

effSAMWMIX has chosen the best possible arm the most
number of times (see Fig.4.) and thus aggregated to a lower
regret compared to KL-UCB and TS. Here also the average time
taken to run an experiment with effSAMWMIX is about 58

milliseconds which is the lowest (See Table.1) of that of the
three algorithms.

Fig. 4. Comparison of best arm’s Pull Count when the rewards followed a

Triangular Distribution.

3) Truncated Normal Distribution

effSAMWMIX’s performance is superior to other two
algorithms when the mean of arms’ rewards followed a
Truncated Normal Distribution.

Fig. 5. Comparison of cumulative regrets when the rewards followed a

Truncated Normal Distribution

effSAMWMIX is superior both in effectiveness and
efficiency (see Fig.5 & Fig 6)

Fig. 6. Comparison of best arm’s Pull Count when the rewards followed a

Truncated Normal Distribution.

6

4) Bernoulli Distribution

Fig. 7. Comparison of cumulative regrets when the rewards followed a

Bernoulli Distribution

When the mean of arms’ rewards followed a Bernoulli
distribution the performance results are favorable to
effSAMWMIX both of effectiveness and efficiency (see Fig.7
& Fig 8)

Fig. 8. Comparison of best arm’s Pull Count when the rewards followed a

Bernoulli Distribution.

5) Poisson Distribution
effSAMWMIX performed better than the other two

algorithms in terms of time efficiency.

Fig. 9. Comparison of cumulative regrets when the rewards followed a

Poisson Distribution

TS has performed better than both KL-UCB and
effSAMWMIX (see Fig.1 & Fig.2.) even though TS’s time
efficiency is the lowest of the three (see Table .1.).

Fig. 10. Comparison of best arm’s Pull Count when the rewards followed a P

Distribution.

6) Exponential Distribution
The time efficiency of effSAMWMIX is still the best among

the algorithms in comparison but the regret of KL-UCB is the
lowest.

Fig. 11. Comparison of cumulative regrets when the rewards followed an

Exponential Distribution

While effSAMWMIX performed with a regret lower than
that of TS, KL-UCB has the best regret when the rewards
followed an Exponential distribution.

Fig. 12. Comparison of best arm’s Pull Count when the rewards followed an

Exponential Distribution.

V. CONCLUSIONS AND FUTURE DIRECTIONS

The proposed SMAB algorithm effSAMWMIX is compared
with the KL-UCB and Thompson Sampling MAB algorithms.
The tests are run when the available arms follow the various
distributions mentioned in the preceding sections. In all the
cases, effSAMWMIX achieved a better time efficiency than
those in comparison. Except for when the arms’ rewards
followed either an Exponential distribution or a Poisson
distribution, effSAMWMIX outperformed KL-UCB and TS in
terms of effectiveness i.e. with a minimum of the cumulative
regret achieved over the horizon. In the case when the arms’

7

rewards followed an exponential distribution, KL-UCB
achieved the lowest regret while effSAMWMIX ranked second.
And in the Poisson distribution case, effSAMWMIX performed
next to Thompson Sampling SMAB.

The effSAMWMIX obtains a 𝑙𝑙𝑙𝑙𝑙𝑙 regret which is a desirable
property for an SMAB algorithm. Also effSAMWMIX has a fast

execution time and has the best efficiency among the three
algorithms over all the cases in discussion. The authors intend to
check the applicability of this algorithm by extending it to
incorporate contextual information so as to address the explore-
exploit problems that are common in any real-world business
environment like that of a News article recommendation or cold-
start problems in ecommerce domain.

VI. REFERENCES

1 Vargas, A.M.: ‘Linear Bayes policy for learning in contextual-bandits’, Expert Systems with Applications, 2013, 40, (18),
pp. 7400-7406
2 Abdulla, M.S., and Bhatnagar, S.: ‘Multi-armed bandits based on a variant of Simulated Annealing’, Indian Journal of
Pure and Applied Mathematics, 2016, 47, (2), pp. 195-212
3 Boby Chaitanya, V., & Mohammed Shahid A: ‘Bandit Algorithms for Contextual Advertising: An Evaluation of
SOFTMIX algorithm over the benchmark Yahoo! FrontPage Today Dataset.’. Proc. 2nd Pan I.I.M World Management Conference,
Kozhikode, India2014, November pp. Pages
4 Garivier, A., and Cappé, O.: ‘The KL-UCB Algorithm for Bounded Stochastic Bandits and Beyond’, in Editor
(Ed.)^(Eds.): ‘Book The KL-UCB Algorithm for Bounded Stochastic Bandits and Beyond’ (2011, edn.), pp. 359-376
5 Kaufmann, E., Korda, N., and Munos, R.: ‘Thompson sampling: An asymptotically optimal finite-time analysis’, in Editor
(Ed.)^(Eds.): ‘Book Thompson sampling: An asymptotically optimal finite-time analysis’ (Springer, 2012, edn.), pp. 199-213
6 Thompson, W.R.: ‘On the likelihood that one unknown probability exceeds another in view of the evidence of two
samples’, Biometrika, 1933, 25, (3/4), pp. 285-294
7 Robbins, H.: ‘Some aspects of the sequential design of experiments’: ‘Herbert Robbins Selected Papers’ (Springer, 1985),
pp. 169-177
8 Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire, R.E.: ‘Gambling in a rigged casino: The adversarial multi-armed
bandit problem’, in Editor (Ed.)^(Eds.): ‘Book Gambling in a rigged casino: The adversarial multi-armed bandit problem’ (IEEE,
1995, edn.), pp. 322-331
9 Agrawal, S., and Goyal, N.: ‘Analysis of Thompson Sampling for the Multi-armed Bandit Problem’, in Editor (Ed.)^(Eds.):
‘Book Analysis of Thompson Sampling for the Multi-armed Bandit Problem’ (2012, edn.), pp. 39.31-39.26
10 Kaufmann, E., Cappé, O., and Garivier, A.: ‘On Bayesian Upper Confidence Bounds for Bandit Problems’, in Editor
(Ed.)^(Eds.): ‘Book On Bayesian Upper Confidence Bounds for Bandit Problems’ (2012, edn.), pp. 592-600
11 Kotz, S., and Van Dorp, J.R.: ‘Other Continuous Families of Distributions with Bounded Support and Applications’ (World
Scientific, 2004. 2004)

8

Research Office

Indian Institute of Management Kozhikode

IIMK Campus P. O.,

Kozhikode, Kerala, India,

PIN - 673 570

Phone: +91-495-2809238

Email: research@iimk.ac.in

Web: https://iimk.ac.in/faculty/publicationmenu.php

9

	I. Introduction
	II. Multi-armed bandits- a review
	A. The Multi-Armed Bandit(MAB) problem in brief
	B. The Stochastic Multi-Armed Bandit (SMAB)
	C. Performance Measures for an SMAB

	III. the 𝑒𝑓𝑓𝑆𝐴𝑀𝑊𝑀𝐼𝑋 algorithm
	IV. empirical evaluation of 𝑒𝑓𝑓𝑆𝐴𝑀𝑊𝑀𝐼𝑋
	A. Customized Synthetic Distribution (CuSyn)
	B. A few other Reward distributions
	C. Design of the Experiment
	1) Customized Synthetic(CuSyn) Distribution
	2) Triangular Distribution
	3) Truncated Normal Distribution
	effSAMWMIX’s performance is superior to other two algorithms when the mean of arms’ rewards followed a Truncated Normal Distribution.
	effSAMWMIX is superior both in effectiveness and efficiency (see Fig.5 & Fig 6)
	4) Bernoulli Distribution
	When the mean of arms’ rewards followed a Bernoulli distribution the performance results are favorable to effSAMWMIX both of effectiveness and efficiency (see Fig.7 & Fig 8)
	5) Poisson Distribution
	6) Exponential Distribution

	V. Conclusions and Future Directions
	VI. References

