## Indian Institute Of Management Kozhikode

 Working Paper
## A Phase-II Nonparamctric Cusum Chart With <br> An Application To Exchange Rates Data

Mukherjee A<br>Marozzi M<br>Shovan Chowdhury

IIMK/WPS/163/QM\&OM/2014/21

November 2014

IIMK/WPS/163/QM\&OM/2014/21

# a PHASE-II NONPARAMETRIC CUSUM CHART WITH an application to exchange rates data 

Mukherjee A ${ }^{1}$<br>Marozzi M ${ }^{2}$<br>Shovan Chowdhury ${ }^{3}$

${ }^{1}$ Indian Institute of Management Udaipur
${ }^{2}$ Dipartimento di Economia e Statistica, Università della Calabria, Rende (CS), Italy
${ }^{3}$ Indian Institute of Management Kozhikode, IIMK Campus PO, Kozhikode- 673570, email: shovanc@iimk.ac.in

# A PHASE-II NONPARAMETRIC CUSUM CHART WITH AN APPLICATION TO EXCHANGE RATES DATA 

A. Mukherjee
Indian Institute of Management
Udaipur; OM, QM\& IS Area;
Udaipur, Rajasthan, India.
E-mail: amitmukh2@ yahoo.co.in

M. Marozzi<br>Dipartimento di Economia e Statistica, Università della Calabria,<br>Rende (CS), Italy<br>E-mail: marco.marozzi @unical.it

S. Chowdhury<br>Indian Institute of Management<br>Kozhikode, QM \& OM Area<br>Kerala, India<br>E-mail: meetshovan@gmail.com


#### Abstract

Recently, Chowdhury et al. (2014a) proposed a single distribution-free Shewhart-type control chart based on the Cucconi (1968) test statistic for monitoring shift in the unknown location and scale parameters of a process distribution simultaneously. Several recent researches demonstrated that the CUSUM type charts perform better than the Shewhart-type charts under small and persistent shift. In the present work, we develop a phase II distribution-free CUSUM chart based on the Cucconi statistic, referred to as CUSUM-Cucconi (CC) chart. Nonparametric nature of the Cucconi statistic ensures that all the in control (IC) properties of the proposed chart remain invariant and known for all continuous process distributions. Control limits are tabulated for implementation of the chart. The IC and out of control (OOC) performance of the chart are thoroughly investigated in terms of the average, standard deviation, median and some percentiles of the corresponding run length distributions. A detailed comparison with the Shewhart-type Cucconi and Lepage charts as well as the CUSUM Lepage chart (as in Chowdhury et al. (2014b)) is presented. The proposed chart is illustrated with exchange rates data.


Keywords: Cucconi Statistic; Average Run Length; Upper Control Limit; CUSUM Cucconi Chart; Nonparametric; Monte-Carlo Simulation; Statistical Process Control.

MSC 2010 subject classification: 62L10, 62L05, 62G10, 62P30, 62P20

## 1. INTRODUCTION

Traditional statistical process control (SPC) charts use the normality assumption on the process distribution which is often found to be invalid in many practical situations. For instance, lifetimes of products can often be described by non-normal distributions viz. exponential, log-normal,

Weibull etc. Even in many cases (see Qiu and Hawkins (2001, 2003), Qiu and Li (2011)), it is difficult to find a parametric distribution to model certain quality characteristic. In cases when the normality assumption is very hard to justify, several authors have pointed out that the actual false alarm rate of traditional control charts could be substantially larger or smaller than the assumed false alarm rate, resulting in either frequent disruptions of the production process or manufacturing of large number of defective products. One may see the works by Lucas and Crosier (1982), Rocke (1989), Hackl and Ledolter (1992), Amin et al. (1995) among others for further details.

To address these problems, host of researchers, see for example Bakir and Reynolds (1979), Bakir (2006), Chakraborti et al. (2011) advocated the use of distribution-free (nonparametric) control charts for monitoring either the process location or the scale parameter separately, in particular when the process distribution is unknown or known to be significantly different from normal. Sometimes functional form of the distribution is known but very complicated in nature. For a detailed discussion on nonparametric control charts, readers may see Chakraborti et al. (2001, 2007, 2011). Use of separate charts for different process parameters, specially, in nonparametric set-up, has certain practical limitations. Their simultaneous use often complicates inferential issues and interpretation apart from causing practical problems with regard to implementation. Several researchers, therefore, advocated use of a single chart for simultaneous monitoring of the two parameters instead of two separate charts for location and scale parameters. Interested readers may be referred to Cheng and Thaga (2006) that covers up the works in a detailed review of literature until 2005 and McCracken and Chakraborti (2013) for more recent advances. Despite being simpler in implementation, they may perform better than separate charts even in the parametric case as shown by McCraken et al. (2013).

Whereas a Shewhart control chart is designed to detect an immediate and substantial change in the process distribution, a cumulative sum (CUSUM) control chart is known to be advantageous to detect smaller, more persistent or cumulative shifts in the process distribution. Interested readers may see Reynolds et al. (1990), Yashchin (1992), Gan (1993, 2007), Chang and Gan (1995), Hawkins and Olwell (1998) and Goel (2011), Graham et al. (2014) and Chowdhury et al. (2014b) among others, for a detailed discussion on CUSUM control charting literature.

In the context of distribution-free CUSUM control charts, while Park and Reynolds (1987) developed nonparametric procedures for monitoring location parameter of a continuous process based on the linear placement statistic, McDonald (1990) considered a CUSUM procedure for individual observations based on the sequential ranks statistic. Bakir and Reynolds (1979) and Amin et al. (1995) proposed a nonparametric CUSUM chart based on the signed-rank and sign statistics, respectively. Run-length distribution of the CUSUM chart was discussed in detail by Jones et al. (2004). Li et al. (2010) considered the Wilcoxon rank sum test to detect step mean shifts through CUSUM and EWMA charts. Recently, Yang and Cheng (2011) and Mukherjee et al. (2013) developed a nonparametric CUSUM chart to detect the possible small shifts in process mean. Ross et al. (2011) discussed the problem of nonparametric monitoring of data streams for changes in location and scale and Ross and Adams (2012) considered two nonparametric control charts for detecting arbitrary distributional changes in the process. More details may be found in Chatterjee and Qiu (2009), Qiu and Li (2011) and Qiu (2013).

For monitoring both the location and scale parameters, Mukherjee and Chakraborti (2012) and Chowdhury et al. (2014b) considered nonparametric Shewhart-Lepage (SL) and CUSUMLepage (CL) charts based on the Lepage (1971) statistic. With the same objective, Chowdhury et al. (2014a) proposed a nonparametric Shewhart-Cucconi (SC) based on the Cucconi (1968)
statistic. In particular, Chowdhury et al. (2014b) showed that the CL chart outperforms several other CUSUM charts, namely, the CUSUM chart based on Exceedance Statistic designed by Mukherjee et al. (2013) to monitor location shifts only; the CUSUM chart based on the Wilcoxon statistic designed by Li et al. (2010) that is used mainly for location shifts but also recommended for general shifts; as well as the CUSUM charts based on Kolmogorov-Smirnov statistic and Cramer-von-Mises statistic, for a wide class of location-scale models when the shift occurs in both the location and scale parameters. In this paper, we take the work another step forward and consider a nonparametric CUSUM chart based on the Cucconi (1968) statistic. We compare the proposed chart with the CL chart as well as the SL and SC charts and establish that the proposed chart is more effective than its competitors in various situations and is then preferable for overall monitoring.

The rest of the paper is organized as follows. Statistical framework and preliminaries along with a brief background on the Cucconi statistic are outlined in Section 2. Steps for implementation of the proposed CUSUM-Cucconi (CC) chart are introduced in Section 3 along with brief reference to the post-signal follow-up. Section 4 is devoted to the IC performance of the chart including run length properties and determination of the charting constant $H$. OOC performances along with a detailed comparison with the CL, SL and SC charts, are presented in Section 5. The charting procedure is illustrated in Section 6 with a new interesting financial data set. Section 7 concludes with a summary and directions for future research.

## 2. STATISTICAL FRAMEWORK AND PRELIMINARIES

Marozzi (2009) showed that the Cucconi test performs like or better than the more well-known Lepage test in many cases in the context of the testing of equality of both the location and scale
parameters of two continuous distributions in the distribution-free framework. Many nonparametric tests for jointly testing location and scale parameters are based on the combination of two tests, one for location and one for scale, see the comparison study by Marozzi (2013). The most popular combination is the sum of the respective squared standardized test statistics, as used in the Lepage test. The Cucconi test statistic is not a combination of a test statistic for location and one for scale differences, but considers the squares of ranks and 'contrary ranks' making computations easier. Marozzi (2009) performed a detailed power simulation study including distributions of different shapes and showed that the Cucconi test maintains its size very close to the nominal level and is more powerful than the Lepage test in several situations. It was also seen that the presence of ties did not lower the performance of the Cucconi test contrary to the Lepage test. Motivated by these observations, we consider an adaptation of the Cucconi test to propose a CUSUM control chart for the joint monitoring of location and scale parameters of a continuous process.

Let $U_{1}, U_{2}, \ldots, U_{m}$ and $V_{1}, V_{2}, \ldots, V_{n}$ be independent random samples from two populations with cumulative distribution functions (cdf) $F(x)$ and $G(y)=F\left(\frac{x-\theta}{\delta}\right)$ with $\theta \in \mathfrak{R}, \delta>0$, respectively, where $F$ is some unknown continuous cdf. Here, the shift parameters $\theta$ and $\delta$ stand for unknown location and scale, respectively. Introduce an indicator variable $I_{k}=0$ or 1 as the $k$-th order statistic of the combined $N(=m+n)$ observations is a $U$ or $V$. Define, the familiar Wilcoxon rank sum (WRS) statistic used to test the equality of the two location parameters as the sum of ranks of $V_{i}$ in the combined sample of size $N$, given by $T_{1}=\sum_{k=1}^{N} k I_{k}$.

Further consider the sum of the squares of the ranks of $V_{i}$ 's in the combined sample as: $S_{1}=\sum_{k=1}^{N} k^{2} I_{k}$. Suppose that the sum of anti-ranks of $V_{i}$ and the sum of squares of anti-ranks of $V_{i}$ in the combined sample are $T_{2}$ and $S_{2}$ respectively. It is easy to see from Chowdhury et al. (2014a) that the $T_{2}$ is given by: $T_{2}=\sum_{k=1}^{N}(N+1-k) I_{k}=n(N+1)-T_{1}$, whereas $S_{2}$ is given by $S_{2}=\sum_{k=1}^{N}(N+1-k)^{2} I_{k}=n(N+1)^{2}-2(N+1) T_{1}+S_{1}$.

In Phase II, the process is said to be in control if $F=G$, that is when $\theta=0$ and $\delta=1$. It is well known, see Gibbons and Chakraborti (2010), that $E\left(T_{1} \mid I C\right)=\frac{1}{2} n(N+1)$ and $\operatorname{Var}\left(T_{1} \mid I C\right)=\frac{1}{12} m n(N+1)$. We can further observe from Marozzi (2009), Chowdhury et al. (2014a) that $E\left(S_{1} \mid I C\right)=E\left(S_{2} \mid I C\right)=\frac{1}{6} n(N+1)(2 N+1) \quad$ and $\quad \operatorname{Var}\left(S_{1} \mid I C\right)=\operatorname{Var}\left(S_{2} \mid I C\right)=$ $\frac{1}{180} m n(N+1)(2 N+1)(8 N+11)$. Define the standardized $S_{1}$ and $S_{2}$ statistics as:

$$
W=\frac{S_{1}-E\left(S_{1} \mid I C\right)}{\sqrt{\operatorname{Var}\left(S_{1} \mid I C\right)}}=\frac{6 S_{1}-n(N+1)(2 N+1)}{\sqrt{\frac{1}{5} m n(N+1)(2 N+1)(8 N+11)}}
$$

and

$$
Z=\frac{S_{2}-E\left(S_{2} \mid I C\right)}{\sqrt{\operatorname{Var}\left(S_{2} \mid I C\right)}}=\frac{6 S_{2}-n(N+1)(2 N+1)}{\sqrt{\frac{1}{5} m n(N+1)(2 N+1)(8 N+11)}} .
$$

Note that in IC set-up, $E(W)=E(Z)=0$ and $\operatorname{VAR}(W)=\operatorname{VAR}(Z)=1$. Further, $W$ and $Z$ are negatively dependent with correlation coefficient taking values in the interval ( $-1,-7 / 8$ ) and
expressed as $\operatorname{Corr}(W, Z)=\frac{2\left(N^{2}-4\right)}{(2 N+1)(8 N+11)}-1=\rho$. The minimum -1 occurs in the trivial situation where $N=2$, while the supremum is reached when $N$ diverges to infinity with $\lim _{N \rightarrow \infty} \rho=-7 / 8$. When the process is OOC, that is when $\theta \neq 0$ and $\delta=1$, or when $\theta=0$ and $\delta \neq 1$, or when $\theta \neq 0$ and $\delta \neq 1$, one or both of $E(W)$ and $E(Z)$ are non-zero, the various situations are reported with more details by Marozzi (2009). In order to combine the information provided by both $W$ and $Z$ regarding the presence of a difference in location as well as in scale, Cucconi (1968) proposed the following rank based statistic:

$$
C=\frac{W^{2}+Z^{2}-2 \rho W Z}{2\left(1-\rho^{2}\right)} .
$$

It is important to note that the higher the deviation of $\theta$ and $\delta$ from 0 and 1 respectively, the larger is the value of $C$. Cucconi (1968) graphically showed that the acceptance region of the test based on $C$ is an ellipse in the $W$ - $Z$ plane. Alternatively, $C$ may be also interpreted using the concept of Mahalanobis distance. Note that this interpretation is novel in the sense that it was not visualized earlier by Cucconi (1968). We see that $C$ may be seen as one half of the Mahalanobis distance between $W$ and $Z$ as:

$$
C=\frac{1}{2}\left[\begin{array}{l}
W \\
Z
\end{array}\right]^{T}\left[\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right]^{-1}\left[\begin{array}{l}
W \\
Z
\end{array}\right] .
$$

It is important to emphasize that the Mahalanobis distance takes appropriate account of the correlation $\rho$ and is very different than the Euclidean distance between $W$ and $Z$ because $\rho$ is very high (in absolute value).

Let $C_{j}$ denote the $C$ statistic computed on the $j$-th test sample. The upper one sided distribution free CUSUM-Cucconi chart to detect shift in location or/and scale is based on

$$
\begin{equation*}
C C_{j}=\max \left\lfloor 0, C C_{j-1}+\left(C_{j}-\mu_{C_{j}}\right)-k\right\rfloor \text { for } j=1,2, \ldots \tag{2.1}
\end{equation*}
$$

where the starting value $C C_{0}=0, \mu_{C_{j}}=E\left(C_{j}\right)=1$ and $k \geq 0$ is called the reference value. Hence the proposed upper one-sided CUSUM-Cucconi plotting statistic is defined as

$$
\begin{equation*}
C C_{j}=\max \left[0, C C_{j-1}+\left(C_{j}-1\right)-k\right] \text { for } \quad j=1,2, \ldots \tag{2.2}
\end{equation*}
$$

Remark 2.1. It should be noted that an equivalent formulation of the $C$ statistic is $\tilde{C}=W^{2}+Z^{2}-2 \rho W Z$. It is easy to see that $\widetilde{C}$ is one to one and increasingly related with $C$ because $2\left(1-\rho^{2}\right)$ is a positive constant. In that case, for $j=1,2, \ldots, \ldots$ (2.2) may be rewritten as: $C C_{j}=\max \left[0, C C_{j-1}+\left(\widetilde{C}_{j}-2\left(1-\rho^{2}\right)\right)-k\right]$. However, keeping parity with Chowdhury et al. (2014a), we use the traditional $C$ statistic in our computations and illustrations.

Remark 2.2. Even if the data comes from a continuous population there may be a few ties in practice due to rounding or truncation. Without ties the labeling of the samples (first or second) does not matter in computing $C$ because $W^{*}=-W$ and $Z^{*}=-Z$ where $W^{*}$ and $Z^{*}$ denote respectively $W$ and $Z$ computed on the first sample. If ties are present, we obtain slightly different values of the Cucconi statistic by computing it on the first and second sample elements. In this case, we replace the $C$ statistic with $\left(C+C^{*}\right) / 2$ where $C^{*}$ is the Cucconi statistic computed on the first sample elements. Such computational aspect in presence of ties was already noted by Cucconi (1968) which proposed a more complex solution.

## 3. PROPOSED CHARTING PROCEDURE

The proposed upper one-sided CUSUM-Cucconi (CC) control chart is constructed as follows.

Step-1: Collect and establish a reference sample $\boldsymbol{X}_{\boldsymbol{m}}=\left(X_{1}, X_{2}, \ldots, X_{m}\right)$ of size $m$ from an IC process. Establishment of a reference sample is itself an interesting problem; however, we are not considering the issue in this paper.

Step- 2: Sequentially observe the $j$-th phase II (test) sample $\boldsymbol{Y}_{j ; n}=\left(Y_{j 1}, Y_{j 2}, \ldots, Y_{j n}\right)$ of size $n, j=1,2, \ldots$ Step-3: Identify $\boldsymbol{X}_{\boldsymbol{m}}$ as $U$ and $\boldsymbol{Y}_{\boldsymbol{j} ; \boldsymbol{n}}$ as $V$ samples respectively and calculate $W_{j}$ and $Z_{j}$ for the $j$-th test sample following the equations in Section 2.

Step-4: Sequentially obtain the plotting statistic $C C_{j}=\max \left[0, C C_{j-1}+\left(C_{j}-1\right)-k\right]$ for the $j$-th subgroup $(j=1,2, \ldots)$ of the CC chart starting with $C C_{0}=0$.

Step-5: Plot $C C_{j}$ against an upper control limit (UCL) $H$. The lower control limit (LCL) is 0 by default as we have considered an upper one sided CUSUM chart.

Step-6: If $C C_{j}$ exceeds $H$, the process is declared OOC at the $j$-th test sample. If not, the process is thought to be IC and testing continues to the next test sample.

When the process is declared OOC at the $j$-th test sample, Chowdhury et al. (2014a) proposed to compute the $p$-values for the Wilcoxon test for location and the Mood test for scale (see Gibbons and Chakraborti 2010) respectively applied to these two samples: $X=\left(X_{1}, X_{2}, \ldots, X_{m}\right)$ with the $m$ Phase-I observations, and $Y_{j}=\left(Y_{j 1}, Y_{j 2}, \ldots, Y_{j n}\right)$ with the $n$ observations from the $j$-th test sample. Denote the $p$-values as $p_{1}$ and $p_{2}$ respectively. If $p_{1}$ is very low but not $p_{2}$, a shift in only location is indicated. If $p_{1}$ is relatively high but $p_{2}$ is low, only a shift in scale is suspected. If both $p$-values are very low; a shift in both location and scale is declared. Note that it might happen that neither $p_{1}$ nor $p_{2}$ is very small even though $C C_{j}$ is high, either because of an interaction between the location and scale changes or because of a false alarm. The same follow up procedure will work in the current context.

## 4. IC PROPERTIES OF THE CHART

### 4.1 Run Length Distribution

Mukherjee et al. (2013) mentioned that the run-length distribution of a CUSUM chart can be studied broadly via two approaches, namely, integral equation approach as in Page (1954) for continuous observations and Markov chain approach as proposed by Ewan and Kemp (1960) and further developed by Brook and Evans (1972). In the past four decades, host of researchers addressed this issue. Interested readers may see Barnard (1959), Bissell (1969), Champ and Rigdon (1991), Chao (2000), Crowder (1987a, b), Gan (1992), Khan (1978), Lucas and Crosier (1982), Reynold (1975), Robinson and Ho (1978), Saccucci and Lucas (1990), Vardeman and Ray (1985), Woodall $(1983,1984)$ and Waldmann (1986).

Unlike most of the previous work, we propose a Phase-II CUSUM chart and therefore, like in Mukherjee et al. (2013) first we need to approximate the conditional run length distribution of the CUSUM chart given $X_{(1)}<\cdots<X_{(m)}$. Let $R$ denote the run length. Then the unconditional average run-length distribution is obtained by

$$
\begin{align*}
& \quad \int_{-\infty}^{\infty} \ldots \int_{-\infty}^{X_{(3)}} \int_{-\infty}^{X_{(2)}} E\left(R \mid X_{(1)}<\cdots<X_{(m)}\right) d F\left(X_{(1)}\right) d F\left(X_{(2)}\right) \ldots d F\left(X_{(m)}\right) \\
& =m!\int_{0}^{1} \ldots \int_{0}^{F^{-}\left(u_{3}\right)} \int_{0}^{F^{-}\left(u_{2}\right)} E\left(R \mid X_{(1)}<\cdots<X_{(m)}\right) d u_{1} d u_{2} \ldots d u_{m} \tag{4.1}
\end{align*}
$$

In order to implement the Markov chain approach to determine $E\left(R \mid X_{(1)}<\cdots<\right.$ $\left.X_{(m)}\right)$, we consider, as in Fu et al. (2002), large but finite number of states, say $\vartheta(\vartheta=1,2, \ldots)$ and $H=U C L$. Let $S_{n}(\vartheta)$ be a finite-state homogeneous Markov chain on the state space $\Omega$ with transition matrix $\Lambda$ such that
(a) $\Omega=\left\{\mathrm{a}_{0}, \mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\vartheta+1}\right\}$, where $\mathrm{a}_{0}=0<\mathrm{a}_{1}<\cdots<\mathrm{a}_{\vartheta}<\mathrm{a}_{\vartheta+1}=H$ where $\mathrm{a}_{i}=(i-$ 0.5)d, $i=1,2, \ldots, \vartheta$ with $d=\frac{h}{\vartheta+1}$.
(b) $\Lambda=\left(\begin{array}{cc}T & \tilde{P} \\ \tilde{O} & 1\end{array}\right)=\left(\begin{array}{cccc}p_{00} & p_{01} \ldots \ldots p_{0 \vartheta} & p_{0, \vartheta+1} \\ p_{10} & p_{11} \ldots \ldots p_{1 \vartheta} & p_{1, \vartheta+1} \\ & \ldots \ldots \ldots & \\ p_{\vartheta 0} & p_{\vartheta 1} & \ldots \ldots & p_{\vartheta \vartheta} \\ 0 & 0 & p_{\vartheta, \vartheta+1} & 0\end{array}\right)$
where $p_{i j}$ is the one-step transition probability from state $i$ to state $j ; T$ is the transition probability sub-matrix with all the probabilities of going from one transient state to another; $\widetilde{P}$ is the column vector that contains all the probabilities of going from each transient state to the absorbing state; $\widetilde{O}$ is a null row vector that contains all the probabilities of going from the absorbing state to each transient state and the scalar value 1 is the probability of going from the absorbing state to the absorbing state. The elements of the sub-matrix $T$ may be calculated from the conditional distribution of $Y$ given $\boldsymbol{X}_{\boldsymbol{m}}$. It is easy to see that, for $i=0,2, \ldots, \vartheta$,

$$
\begin{gather*}
p_{i 0}=P\left(C C_{S}=0 \left\lvert\, C C_{s-1}=\frac{(i-0.5) h}{\vartheta+1}\right. ; \boldsymbol{X}_{\boldsymbol{m}}=\boldsymbol{x}_{\boldsymbol{m}}\right) \\
=\left\{\begin{array}{c}
P\left(\left.C_{s} \leq \frac{(k+1)(\vartheta+1)}{(i-0.5) h} \right\rvert\, \boldsymbol{X}_{\boldsymbol{m}}=\boldsymbol{x}_{\boldsymbol{m}}\right) \quad \text { if } \frac{(k+1)(\vartheta+1)}{(i-0.5) h} \geq 0 \\
0 \\
\text { otherwise }
\end{array}\right. \tag{4.2}
\end{gather*}
$$

Similarly for $i=1,2, \ldots, \vartheta+1$, and for $j=2,3, \ldots, \vartheta+1$, we have that

$$
\begin{gather*}
p_{i j}=P\left(C C_{s}=\frac{(j-0.5) h}{\vartheta+1} \left\lvert\, C C_{s-1}=\frac{(i-0.5) h}{\vartheta+1}\right. ; \boldsymbol{X}_{\boldsymbol{m}}=\boldsymbol{x}_{\boldsymbol{m}}\right) \\
=\left\{\begin{array}{c}
P\left(\left.C_{s} \leq(1+k)+\frac{(j-i) h}{\vartheta+1} \right\rvert\, \boldsymbol{X}_{\boldsymbol{m}}=\boldsymbol{x}_{\boldsymbol{m}}\right) \quad \text { if } \\
0
\end{array} \begin{array}{c}
(1+k)+\frac{(j-i) h}{\vartheta+1} \geq 0 \\
\text { otherwise }
\end{array}\right. \tag{4.3}
\end{gather*}
$$

Define, $\mu_{i}=E\left(N_{i} \mid \boldsymbol{X}_{\boldsymbol{m}}=\boldsymbol{x}_{\boldsymbol{m}}\right)$ as the conditional average run-length for $i=0,2, \ldots, \vartheta$. Then, we have, from the properties of Markov chains,

$$
\tilde{\mu}=\left(\mu_{0}, \mu_{1}, \ldots, \mu_{\vartheta}\right)^{\prime}=(I-T)^{-1} \tilde{1} .
$$

It is easy to identify $\mu_{0}=E\left(N_{0} \mid \boldsymbol{X}_{\boldsymbol{m}}=\boldsymbol{x}_{\boldsymbol{m}}\right)=E\left(R \mid \boldsymbol{X}_{\boldsymbol{m}}=\boldsymbol{x}_{\boldsymbol{m}}\right)$ for the chart with the starting value 0 and use it for to obtain unconditional average run-length using (4.1).

### 4.2. Determination of $\boldsymbol{H}$

Note that determining $A R L_{0}$ by solving multiple integral equations using Markov Chain is not computationally straightforward. There are chances of very large computational error while approximating so many multiple integrals in order to estimate unconditional $A R L_{0}$. A Monte-Carlo simulation approach is therefore preferred in the present context. In order to determine the $U C L=$ $H$ under a nominal $A R L_{0}$ of 250,370 and 500 , for different choices of $m$ and $n$, we use a simple search algorithm. For a given $m, n$ and $k$ we determine $A R L_{0}$ for a sequence of values of $H$. A sequence of 16 equally spaced values of $H$ that covers the range 250 to 500 for $A R L_{0}$ are considered. A predictive model for $A R L_{0}$ as a function of $H$ based on smoothing spline is fitted using generalised cross validation technique for every given set of $m, n$ and $k$. Given a triplet ( $m, n, k$ ), we determine appropriate $H$ for nominal $A R L_{0}$ of 250,370 and 500 from the fitted model.

In the present article, we consider four different choices of $m$, the reference sample size. Those are $50,100,150$ and 300 . We choose $n=5$ and 11 as the representative of the size of test samples. For each of these 8 combinations of $(m, n)$ three choices of reference value $(k)$ are considered. Noting that the variance of the Cucconi statistic is 1 (Marozzi 2014), we consider $k=$ $0,1.5$ and 3 in the line of Chowdhury et al. (2014b). More on choice of $k$ is discussed later. We use the free software R (version: 2.15.3) to perform the entire Monte-Carlo experiment using 50,000 replicates. Our findings are presented in Table 1.

## <<TABLE-1 TO BE PLACED HERE>>

### 4.3. IC performance of the chart

Traditionally, IC run length distribution of the CUSUM chart has a long right tail. The same phenomenon can be observed for the proposed CC chart. We see that irrespective of the choice of $m, n$ and $k$, IC run length distribution of the proposed chart is positively skewed. Let us consider the Bowley skewness (also known as quartile skewness coefficient) of the IC run length distribution. We can see that for fixed $n$ and $k$, the Bowley skewness decreases as $m$ increases from 50 to 300 . Similarly, for fixed $m$ and $n$, the Bowley skewness decreases as $k$ increases from 0 to 3. Initially, it decreases sharply with increase in $k$ but rate of decrease is slow for $k>1.5$.

However, for fixed $m$ and $k$, the degree of skewness increases as $n$ increases from 5 to 11 . The rate of change in the skewness coefficient is relatively lower for large $m$ and small $k$. In the expected line, the standard error of the $A R L_{0}$ decreases with increase in $m$ for the proposed chart. However, for larger $m\left(m=100,150\right.$ and 300) the $S D R L_{0}$ decreases as $n$ increases from 5 to 11 for $k=0$ but the $S D R L_{0}$ increases as $n$ increases from 5 to 11 if $k=1.5$ or 3 . For $m=50$ and $k=0$, the $S D R L_{0}$ values are almost the same for $n=5$ and 11 , however, the $S D R L_{0}$ decreases as $n$ increases from 5 to 11 when $k=1.5$ or 3 . For fixed $n$ and $k$, the median and 3-rd quartile values are slowly increasing as $m$ increases while the 95 -th percentile values decreases and therefore the degree of skewness of IC run length distribution is also reducing. In Table 2, we provide various percentiles of the run length distribution with the target $A R L_{0}=500$ for different combinations of $m, n$ and $k$ as used in Table 1. We also provide the corresponding values of the $S D R L_{0}$.
<<TABLE-2 TO BE PLACED HERE>>
We observe from Table 1 that the value of the upper control limit $H$ of the CC chart decreases as $k$ increases for fixed $m, n$ and $\mathrm{ARL}_{0}$ in the IC Set up. More importantly, Table 2
shows that the $S D R L_{0}$ for the CC chart decreases as $k$ increases. Such phenomena can be observed for the CL chart discussed in Chowdhury et al. (2014b).

## 5. PERFORMANCE COMPARISONS

OOC performance of the proposed CC chart is compared with three other control charts designed for joint monitoring of location and scale parameters of an univariate process, namely, ShewhartLepage (CL) Chart of Mukherjee and Chakraborti (2012), Shewhart-Cucconi (SC) Chart by Chowdhury et al. (2014a) and CUSUM-Lepage (CL) Chart by Chowdhury et al. (2014b) for 48 pairs of location and scale shifts $(\theta, \delta)$ values where $\theta=0,0.25,0.5,0.75,1,1.5,2,3$ and $\delta=0.5$ (downward shift), 1 (no scale shift), 1.25, 1.5, 1.75, 2 (upward shift ). For brevity, three population distributions, namely, the symmetric thin tailed normal, the symmetric heavy tailed Laplace and the skewed two-parameter exponential are considered for the purpose of comparison. We consider $m=100,300$ and $n=5$. Results for normal distribution are presented in Table 3 and 4; the same for the Laplace distribution are displayed in Table 5 and 6. Finally, the findings of the twoparameter exponential distribution are placed in Table 7 and 8. The first row of each cell of Tables 3 to 8 is displaying the ARL and (SDRL) values while the second row is showing the 5 -th, 25 -th, 50-th, 75 -th, 95 -th percentiles in the ascending order.

We see, in general, that the OOC characteristics of the CC chart have some similarities in respect of its competitors, namely, the SL, SC and CL charts. Among the similarities, the most important feature is the nature of the OOC run length distribution. It has a long right tail for smaller shifts and is tending to degenerate for larger shifts. Secondly, the OOC ARL, SD and percentiles also decrease sharply with the upward shift in the location or/and scale and finally the CC chart, like its competitors, detects shift in the scale faster than that in the location.

## <<TABLES-3 to 8 TO BE PLACED HERE>>

From Table 3 we see that for normal distribution the CC chart detects any type of shift (in location or/and in scale) of any magnitude (small, moderate or large) faster than the competitive charts except for the decreasing scale shift accompanied by moderate location shift ( $\theta=1.5$, $\delta=0.50$ ), where the CL chart is slightly advantageous. For smaller shift the choice $k=0$ is suitable while for larger shift $k=1.5$ is preferable. The ARL bias (that is OOC ARL is greater than IC ARL, see Graham et al. (2014) for further details) is prominent for decreasing scale shift accompanied by small location shift when $k>0$. From Table 4, we see that when $m$ increases, the similar features are present in favour of the CC charts for location shift accompanied by no scale change or upward scale shift. However, there are slight dissimilarities as well. Note that, here $k=$ 1.5 is preferable over a wider window of shifts and $k=0$ is preferable only for small shift in both location and/or scale and downward scale shifts. Moreover, the CL chart is overall preferable for downward scale shift as mentioned earlier.

From Table 5, we observe that for the Laplace distribution, the rate of detection is slightly slower than in case of the normal. We further see that as in the thin tailed normal distribution, there is distinct benefit of the CC chart in detecting any type of location shift occurred in conjunction with upward or no scale shift for heavy tailed Laplace distribution. For downward scale shift, the CC chart is better when the scale shift is associated with small to moderate $(0.25 \leq \theta \leq 1.0)$ location shift but otherwise, the CL chart is better. Here also, we observe the ARL bias for decreasing scale shift accompanied by small location shift when $k>0$ is considered. We observe similar phenomenon from Table 6 where $m=300$. For downward scale shift, the CC chart is better only when the scale shift is associated with moderate $(0.50 \leq \theta \leq 0.75)$ location shift.

Further, in case of normal distribution (Table 4) for larger $m, k=1.5$ is preferable over a wider window of shifts.

From Table 7 and 8 we see that for the skewed two-parameter exponential distribution the CC chart captures the shift in scale faster than the others when the location parameter remains in control. Interestingly, for shift in both location and scale, performance of the charts is mixed. The CC chart is also the best performer in detecting smaller shift in location accompanied by slight upward shift or no shift in scale. The SL chart performs slightly better than the CC chart for moderate to large shifts in location (usually for $\theta \geq 1$, except some cases with $m=100$ ) when there is no scale shift or some upward scale shift. For very large shift in location, all the charts including the Shewhart type charts behave similarly. Performance of the charts in case of reduction in scale is somewhat different. For large shifts in location, all the charts behave similarly as expected whereas, for small to moderate changes in location, the CC chart with $k=0$ performs better than the others when $m=100$. On the other hand, the CL chart with $k=0$ detects shifts earlier than the other charts when $m=300$. This feature for downward scale shift is visible even for the symmetric distributions addressed earlier. There are no clear winner between the CL and the CC charts for downward scale shift, however, for all other situations, the CC chart is displaying better performance overall.

Remark 5.1. In connection to a two sample location-scale problem, Marozzi (2009 and 2013) established that when the ratio $m / n$ of the two sample sizes does not exceed 3, the Cucconi test is generally markedly more powerful than the Lepage test under normal and light-tailed distributions whereas under heavy-tailed distributions the Lepage test is slightly more powerful than the Cucconi test. The comparison between the CUSUM charts showed very interesting results:
considering only the smaller shifts (since larger shifts are detected very similarly by both charts), the CC chart performs better than the CL chart also for the Laplace distribution. For the normal distribution, without surprise the CC chart performs better than the CL chart. The results on the CL chart appear to contradict Marozzi (2009 and 2013) results, however, previous results refer to a typical two sample problem where the sample sizes are small and not too unbalanced whereas in statistical process monitoring the sample sizes are very unbalanced with the ratio $\mathrm{m} / \mathrm{n}$ that may even exceed 50 or 100 .

Remark 5.2. As regard to choice of $k$, in general, we can conclude that the detection of small to moderate shifts in location or/and scale is faster for the normal, Laplace and exponential distribution when $k=0$ including the case of reduction in scale. For any large shift, $k=1.5$ is recommended.

## 6. ILLUSTRATIVE EXAMPLES

Effectiveness and usefulness of the CC chart are established in this section with the help of data on daily exchange rates between the Indian Rupee (INR) and Euro currency between April 1, 2012 to March 31, 2014 obtained from the website of the Reserve Bank of India (RBI), the highest banking regulatory authority in India. The lower control limit of the CC chart is 0 by default. The detail analysis is shown in the following subsections.

### 6.1. Analysis of the Exchange Rates data

The second data set consists of daily exchange rates between the Indian rupee (INR) and Euro currency between April 1, 2012 and March 31, 2014. A total of 485 data are extracted from the

RBI website. In this context, it is worth mentioning that Qiu and Li (2014) among others also considered CUSUM charts for monitoring financial data. The authors illustrated CUSUM charts based on daily exchange rates between the Korean Won and US dollar.

An Autoregressive Integrated Moving Average (ARIMA) model is fit to our data set using the in-build "arima" of R. 2.15.0 software. ARIMA $(5,1,4)$ model gives a reasonably good fit to the data with the fitted model as:

|  | AR1 | AR2 | AR3 | AR4 | AR5 | MA1 | MA2 | MA3 | MA4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Coefficients | 0.4689 | 0.5899 | 0.3401 | 0.5671 | 0.177 | 0.5393 | 0.6454 | 0.231 | 0.7697 |
| Std Error | 0.1013 | 0.125 | 0.1064 | 0.1011 | 0.0507 | 0.0961 | 0.1117 | 0.1007 | 0.0858 |

For details on the ARIMA model, interested readers may see Brockwell and Davis (1996), Durbin and Koopman (2001) and Gardner et al. (1980) among others. It is to be noted that the plotting statistics for the CC chart is based on the residuals data set. Moreover, testing procedures for randomness and normality of the IC data set are discussed next in detail. The MLE of the innovations variance is estimated as 0.2512 whereas the log-likelihood and AIC are respectively 352.84 and 725.68 . Details of the computational schemes may be found in R documentation. Mukherjee $(2009,2013)$ addressed in detail the notion of monitoring the residuals of a time series which is often an independent sequence of observations. We consider the residuals here and apply the Box-Pierce and the Box-Ljung test for randomness on the residual observations. We see that the observed $p$-value for the Box-Pierce and the Box-Ljung tests are respectively 0.9544 and 0.9543. A two sided run test for randomness on the residuals gives the $p$-value as 0.9637 . All these tests suggest that the residuals may be safely taken to be random resulting in applicability of the present control charting procedure.

Next, we consider the first 32 weeks data of size 150, starting from Monday, April 2, 2012 to Friday, November 9, 2012 as an IC data set. Therefore, for this example $m=150$. Then, we may
easily consider each successive block of 5 residuals as test samples implying that we have 67 test samples of size $n=5$ each. Also note that the one-sample Kolmogorov-Smirnov test for normality on the first 150 residuals yields a $p$-value of order $10^{-8}$ and that the Jarque-Bera normality test $p$ value is 0.00188 . The Shapiro-Wilk normality test gives little higher $p$-value but still as low as 0.01198. The D'Agostino omnibus normality test also returns a $p$-value of 0.0035 . In particular, the skewness and kurtosis tests exhibit $p$-values as 0.006843 and 0.04504 respectively. Therefore, from all these test procedures along with the tests for randomness, it is very much evident that the reference sample of size 150 is a random sample from a non-normal population. A nonparametric control chart for monitoring any shift in location-scale in this financial time series process could be easily carried out by the proposed CC chart. For a target $\mathrm{ARL}_{0}$ of 500 , for $m=150, n=5$ and for $k=0,1.5$ and $3, H$ values can be easily obtained from Table 1 . The plotting statistics for 67 test samples are not shown for brevity and can be produced on request. The CC charts on exchange data set are shown in Figure 2.

Figure 2 reveals that the CC chart with $k=0$ exhibits the first OOC signal at the $29^{\text {th }}$ test sample and continues to show the same signal afterwards. This indicates that the exchange rates between INR and Euro currency started becoming instable from middle of June-2013, precisely, June 12, 2013. The cases of $k=1.5$ and $k=3$ show a different phenomenon as opposed to the case of $k=0$, except the first change point in terms of attaining instability from stability where both the CC charts demonstrate first OOC signal at the 28 -th test sample (from June 5, 2013) very close to the case of $k=0$. Unlike the case of $k=0$, here the signal runs only up to the 47-th sample excluding the 36 -th and 37 -th test samples. Finally, from the 48 -th test sample onwards there is no signal. The CC chart with $k=3$ shows the OOC signals on the 28 -th and 29 -th samples and then from the 39 -th test sample onwards to the 42-nd test sample and there is no signal from the 43 -rd
test sample onwards. Clearly, large shifts are detected by all three charts and moderate shifts are captured by the charts with $k=0$ and $k=1.5$. Further small shifts are only detected by the chart with $k=0$.

In general, we can say that the Euro currency exchange rates as compared to INR exhibit hyperinflation from the beginning of June, 2013. Although, the pattern sustains for $k=0$, the INR currency seems to recover the loss from around September, October, 2013 according to the CC chart with $k=1.5$ and $k=3$. The follow-up analysis suggests that the aspect most responsible for OOC is the scale one, in particular from the 28 -th test sample.

## 7. SUMMARY AND CONCLUSIONS

The article is comprised of a new phase II distribution-free CUSUM chart based on the Cucconi statistic. All in control properties of the proposed chart remain invariant and known for all univariate continuous process distributions because it is a nonparametric chart. Control limits for some representative values of the reference sample size, the test sample size and the reference value are tabulated for practical implementation. The IC and OOC performance properties of the chart have been investigated through simulations in terms of various run length characteristics and compared with the Shewhart-type Cucconi and Lepage charts as well as the CUSUM Lepage chart. The CC chart is displaying markedly better performance over the other charts in case of both symmetric and skewed distributions in detecting shifts of various magnitudes in location and/or in scale.

As a possible future work, one may consider the construction of an EWMA chart based on the Cucconi Statistic. Further, implementation of the proposed charts using the notion of median run length as in Graham et al. (2014) may be another interesting future research problem. In this
context, it is worth mentioning that construction of a suitable nonparametric self-starting chart for joint monitoring of the location-scale family is also long overdue.

## References.

Amin, R.W., Reynolds Jr. M.R. and Bakir, S.T. (1995). Nonparametric quality control charts based on the sign statistic, Communications in Statistics - Theory and Methods, 24 (6), 1597-1623.

Bakir, S.T. (2006). Distribution-free quality control charts based on signed-rank-like statistics, Communications in Statistics - Theory and Methods, 35, 743-757.

Bakir, S.T. and Reynolds, Jr. M.R. (1979). A nonparametric procedure for process control based on withingroup ranking, Technometrics, 21 (2), 175-183.

Barnard, G.A. (1959). Control charts and stochastic processes, Journal of the Royal Statistical Society B, 21, 239-271.

Bissell, A.F. (1969). CUSUM techniques for quality control, Journal of the Royal Statistical Society C, 18, 1-30.

Brockwell, P. and Davis, R. (1996). Introduction to Time Series and Forecasting, Springer.
Brook, D. and Evans, D.A. (1972). An approach to the probability distribution of CUSUM run length, Biometrika, 59, 539-549.

Champ, C.W., Rigdon, S.E. (1991). A comparison of the Markov chain and the integral equation approaches for evaluating the run length distribution of quality control charts, Communications in Statistics Simulation and Computation, 20 (1), 191-204.

Chang, T. C. and Gan, F. F. (1995). A cumulative sum control chart for monitoring process variance, Journal of Quality Technology, 27, 109-119.

Chao, M.T. (2000). In: Park, S.H., Vining, G.G. (Eds.), Applications of Markov Chains in Quality-Related Matters in Statistical Process Monitoring and Optimization. Marcel-Dekker, New York, 175-188.

Cheng, S.W. and Thaga, K. (2006). Single variables control charts: an overview, Quality and Reliability Engineering International, 22, 811-820.

Chakraborti, S., Graham, M.A. (2007). Nonparametric control charts, Encyclopedia of Statistics in Quality and Reliability, 1, 415-429, John Wiley, New York.

Chakraborti, S., Human, S.W., Graham, M.A. (2011). Nonparametric (distribution-free) quality control charts, In Handbook of Methods and Applications of Statistics: Engineering, Quality Control and Physical Sciences. N. Balakrishnan, Ed., 298-329, John Wiley \& Sons, New York.

Chakraborti, S., Van der Laan, P. and Bakir, S.T. (2001). Nonparametric control charts: An overview and some results, Journal of Quality Technology, 33, 304-315.

Chatterjee, S. and Qiu, P. (2009). Distribution-free cumulative sum control charts using bootstrap-based control limits, Annals of Applied Statistics, 3, 349-369.

Chowdhury, S., Mukherjee, A. and Chakraborti, S. (2014a). A New distribution-free control chart for joint monitoring of location and scale parameters of continuous distributions, Quality and Reliability Engineering International, 30 (2), 191-204.

Chowdhury, S., Mukherjee, A. and Chakraborti, S. (2014b). Distribution-free Phase II CUSUM Control Chart for Joint Monitoring of Location and Scale, Quality and Reliability Engineering International, accepted.

Crowder, S.V. (1987a). Computation of ARL for combined individual measurement and moving range charts, Journal of Quality Technology, 19, 98-102.

Crowder, S.V. (1987b). A program for the computation of ARL for combined individual measurement and moving range charts, Journal of Quality Technology, 19, 103-106.

Cucconi, O. (1968). Un nuovo test non parametrico per il confronto tra due gruppi campionari, Giornale degli Economisti, 27, 225-248.

Durbin, J. and Koopman, S. J. (2001). Time Series Analysis by State Space Methods, Oxford University Press.

Ewan, W. D. and Kemp, K.W. (1960). Sampling inspection of continuous process with no autocorrelation between successive results, Biometrika, 47, 363-380.

Fu, J.C., Spiring, F. A. and Xie, H. (2002). On the average run lengths of quality control schemes using a Markov chain approach, Statistics and Probability Letters, 56, 369-380.

Gan, F. F. (1992). Exact run length distribution for one-sided exponential CUSUM schemes, Statistica Sinica, 2, 297-312.

Gan, F.F. (1993). An optimal design of CUSUM control charts for binomial, Journal of Applied Statistics, 20 (4), 445-460.

Gan, F.F. (2007). Cumulative Sum (CUSUM) chart. Encyclopedia of Statistics in Quality and Reliability,1, 466-470, John Wiley, New York.

Gardner, G, Harvey, A. C. and Phillips, G. D. A. (1980). Algorithm AS154. An algorithm for exact maximum likelihood estimation of autoregressive-moving average models by means of Kalman filtering, Applied Statistics, 29, 311-322.

Gibbons, J. D. and Chakraborti, S. (2010). Nonparametric Statistical Inference, 5th ed., Taylor and Francis, Boca Raton, FL.

Goel, A.L. (2011). Cumulative sum control charts. In Handbook of Methods and Applications of Statistics: Engineering, Quality Control and Physical Sciences. N. Balakrishnan, Ed., 120-129, John Wiley \& Sons, New York.

Graham, M.A., Chakraborti, S. and Mukherjee, A. (2014). Design and Implementation of CUSUM Exceedance Control Charts for Unknown Location. International Journal of Production Research, (to appear).

Hackl, P. and Ledolter, J. (1992). A new nonparametric quality control technique. Communications in Statistics-Simulation and Computation, 21, 423-443.

Hawkins, D.M. and Olwell, D.H. (1998). Cumulative sum charts and charting for quality improvement. Springer-Verlag, New York.

Jones, L.A., Champ, C.W. and Rigdon, S.E. (2004). The run length distribution of the CUSUM with estimated parameters. Journal of Quality Technology, 36 (1), 95-108.

Khan, R.A. (1978). Wald's approximations to the average run length in CUSUM procedures, Journal of Statistical Planning and Inference, 2, 63-77.

Lepage, Y. (1971). A combination of Wilcoxon's and Ansari-Bradley's statistics, Biometrika, 58, 213-217. Li, S.-Y., Tang, L.C. and Ng, S.-H. (2010). Nonparametric CUSUM and EWMA control charts for detecting mean shifts, Journal of Quality Technology, 42 (2), 209-226.

Lucas, J.M. and Crosier, R.B. (1982). Fast initial response for CUSUM quality control schemes: give your CUSUM a head start. Technometrics, 24, 199-205.

Lucas J.M., Crosier R.B. (1982). Robust CUSUM: a robust study for CUSUM quality control schemes, Communications in Statistics - Theory and Methods, 11(23), 2669-2687.

Marozzi, M. (2009). Some notes on the location-scale Cucconi test, Journal of Nonparametric Statistics, 21(5), 629-647.

Marozzi, M. (2013). Nonparametric simultaneous tests for location and scale testing: a comparison of several methods, Communication in Statistics - Simulation and Computation, 42(6), 1298-1317.

Marozzi, M. (2014). The multisample Cucconi test, Statistical Methods and Applications, DOI 10.1007/s10260-014-0255-x

McDonald, D. (1990). A CUSUM procedure based on sequential ranks. Naval Research Logistics, 37 (5), 627-646.

McCracken, A.K., Chakraborti, S. (2013). Control charts for joint monitoring of mean and variance: an overview, Quality Technology and Quantitative Management, 10(1), 17-36.

Montgomery, D.C. (2005). Introduction to Statistical Quality Control, 5th ed., John Wiley, New York.
Mukherjee, A. (2013). Nonparametric Phase-II monitoring for detecting monotone trend based on inverse sampling, Statistical Methods \& Applications, 22 (2), 131-153.

Mukherjee, A. (2009). Some rank-based two-phase procedures in sequential monitoring of exchange rate, Sequential Analysis, 28 (2), 137-162.

Mukherjee, A. and Chakraborti, S. (2012). A distribution-free control chart for joint monitoring of location and scale, Quality and Reliability Engineering International, 28, 335-352.

Mukherjee, A., Graham, M.A. and Chakraborti, S. (2013). Distribution-free exceedance CUSUM control charts for location. Communications in Statistics - Simulation and Computation, 42 (5), 1153-1187.

Page, E. S (1954). Continuous inspection schemes, Biometrika, 41, 100-115.
Park, C. and Reynolds, M.R. (1987). Nonparametric procedures for monitoring a location parameter based on linear placement statistics, Sequential Analysis, 6(4), 303-323.

Qiu, P. (2014). Introduction to Statistical Process Control. Boca Raton, FL: Chapman \& Hall/CRC.
Qiu, P. and Hawkins, D.M. (2001). A rank based multivariate CUSUM procedure, Technometrics, 43(2), 120-132

Qiu, P. and Hawkins, D.M. (2003). A nonparametric multivariate cumulative sum procedure for detecting shifts in all directions, Journal of Royal Statistical Society D, 52(2), 151-164.

Qiu, P. and Li, Z. (2011). On nonparametric statistical process control of univariate processes, Technometrics, 53(4), 390-405.

Qiu P and Zhang J (2014). On Phase II SPC in cases when normality is invalid. Quality and Reliability Engineering International, Accepted.

Reynold, M.R. (1975). Approximations to the average run length in cumulative sum control charts, Technometrics, 25, 295-301.

Reynolds, M.R., Amin, R.W. and Arnold, J.C. (1990). CUSUM charts with variable sampling intervals, Technometrics, 32 (4), 371-384.

Robinson, P. B. and Ho, T.Y. (1978). Average run lengths of geometric moving average charts by numerical methods, Technometrics, 20, 85-93.

Rocke, D.M. (1989). Robust control charts, Technometrics, 31 (2), 173-184.
Ross, G.J., Tasoulis, D.K. and Adams, N.M. (2011). Nonparametric monitoring of data streams for changes in location and scale, Technometrics, 53 (4), 379-389.

Ross, G.J. and Adams, N.M. (2012). Two nonparametric control charts for detecting arbitrary distribution changes, Journal of Quality Technology, 44 (2), 1-15.

Saccucci, M.S. and Lucas, J.M. (1990). Average run lengths for exponentially moving average control schemes using the Markov chain Approach, Journal of Quality Technology, 22, 154-158.

Vardeman, S. and Ray, D. (1985). Average run lengths for CUSUM when observations are exponentially distributed, Technometrics, 27, 145-150.

Waldmann, K.H. (1986). Bounds for the distribution of the run length of one-sided and two-sided CUSUM quality control schemes, Technometrics, 28, 61-67.

Woodall, W.H. (1983). The distribution of the run length of one-sided CUSUM procedures for continuous random variables, Technometrics, 25, 295-301.

Woodall, W.H.(1984). On the Markov chain approach to the two-sided CUSUM procedure, Technometrics, 26, 41-46.

Yang, S.F. and Cheng, S.W. (2011). A new non-parametric CUSUM mean chart, Quality and Reliability Engineering International, 27 (7), 867-875.

Yashchin, E (1992). Analysis of CUSUM and other Markov-type control schemes by using empirical distributions, Technometrics, 34(1), 54-63.

Figure 1. CUSUM CUCCONI CHARTS FOR EXCHANGE RATE DATA
2. A. CASE WITH $k=0$

PHASE-II CUSUM CUCCONI CHART FOR EXCHANGE RATE DATA

2. B. CASE WITH $k=1.5$

PHASE-II CUSUM CUCCONI CHART FOR EXCHANGE RATE DATA


## 2. C. CASE WITH $k=3$

PHASE-II CUSUM CUCCONI CHART FOR EXCHANGE RATE DATA


Table-1.Charting constant $H$ for the CC chart, for values of $m$ and $n$, and for some standard (target) values of ARL ${ }_{0}$

| Chart Parameter | Reference Sample Size | Test Sample size | The Charting Constant (Upper Control Limit) : H |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $k$ | M | $n$ | $\begin{gathered} \text { Target } \\ \text { ARL }_{0}=250 \end{gathered}$ | $\begin{gathered} \text { Target } \\ \text { ARL }_{0}=370 \end{gathered}$ | $\begin{gathered} \text { Target } \\ \text { ARL }_{0}=500 \end{gathered}$ |
|  | 50 | 5 | 7.7284 | 8.8379 | 9.8327 |
|  |  | 11 | 7.2668 | 8.1770 | 8.9850 |
|  | 100 | 5 | 9.6293 | 11.1379 | 12.4718 |
|  |  | 11 | 9.5207 | 10.9068 | 12.1032 |
| 0 | 150 | 5 | 10.5284 | 12.2971 | 13.8690 |
|  |  | 11 | 10.6476 | 12.4249 | 13.8856 |
|  | 300 | 5 | 11.9452 | 14.2447 | 16.1410 |
|  |  | 11 | 12.1344 | 14.3937 | 16.3412 |
|  | 50 | 5 | 2.2030 | 2.6025 | 2.9261 |
|  |  | 11 | 1.9620 | 2.2300 | 2.4441 |
|  | 100 | 5 | 2.8386 | 3.3011 | 3.6399 |
|  |  | 11 | 2.4084 | 2.7586 | 3.0428 |
| 1.5 | 150 | 5 | 3.0756 | 3.5461 | 3.9173 |
|  |  | 11 | 2.6507 | 3.0484 | 3.3748 |
|  | 300 | 5 | 3.3175 | 3.8253 | 4.2202 |
|  |  | 11 | 2.9593 | 3.4145 | 3.7810 |
|  | 50 | 5 | 0.6457 | 1.0286 | 1.3408 |
|  |  | 11 | 0.3852 | 0.6380 | 0.8399 |
|  | 100 | 5 | 1.2437 | 1.6783 | 2.0200 |
|  |  | 11 | 0.7944 | 1.1149 | 1.3878 |
| 3 | 150 | 5 | 1.4601 | 1.9120 | 2.2703 |
|  |  | 11 | 1.0268 | 1.4000 | 1.7101 |
|  | 300 | 5 | 1.6994 | 2.1803 | 2.5484 |
|  |  | 11 | 1.3460 | 1.7861 | 2.1331 |

Table-2. IC performance characteristics of the CC chart for $\mathrm{ARL}_{0}=500$

| Simulated values with $k=0$ |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M | $n$ | H | ARL 0 | SDRL 0 | $5^{\text {th }}$ Percentile | $1^{\text {st }}$ Quartile | Median | $3{ }^{\text {rd }}$ Quartile | $95^{\text {th }}$ Percentile |
| 50 | 5 | 9.8327 | 502.8624 | 972.8935 | 16 | 51 | 136 | 431 | 2560 |
| 50 | 11 | 8.9850 | 501.3713 | 972.8623 | 13 | 41 | 125 | 442 | 2559 |
| 100 | 5 | 12.4718 | 504.0649 | 879.7457 | 27 | 77 | 183 | 492 | 2219 |
| 100 | 11 | 12.1032 | 507.3778 | 868.4424 | 23 | 69 | 179 | 518 | 2223 |
| 150 | 5 | 13.8690 | 499.4431 | 817.8912 | 34 | 90 | 206 | 512 | 2056 |
| 150 | 11 | 13.8856 | 510.3034 | 799.5942 | 32 | 91 | 215 | 550 | 2044 |
| 300 | 5 | 16.1410 | 505.2865 | 716.6678 | 48 | 123 | 258 | 567 | 1820 |
| 300 | 11 | 16.3412 | 501.6056 | 677.7166 | 48 | 124 | 263 | 586 | 1770 |
| Simulated values with $k=1.5$ |  |  |  |  |  |  |  |  |  |
| 50 | 5 | 2.9261 | 499.2659 | 860.9454 | 8 | 60 | 184 | 516 | 2171 |
| 50 | 11 | 2.4441 | 499.5508 | 828.8751 | 6 | 54 | 183 | 552 | 2128 |
| 100 | 5 | 3.6400 | 503.3297 | 753.1925 | 12 | 86 | 239 | 584 | 1914 |
| 100 | 11 | 3.0428 | 501.8708 | 794.4779 | 9 | 70 | 211 | 565 | 2038 |
| 150 | 5 | 3.9173 | 497.9873 | 676.2686 | 15 | 101 | 267 | 614 | 1755 |
| 150 | 11 | 3.3748 | 494.9344 | 728.8364 | 12 | 84 | 236 | 587 | 1880 |
| 300 | 5 | 4.2202 | 495.1961 | 593.0698 | 19 | 119 | 301 | 645 | 1626 |
| 300 | 11 | 3.7810 | 496.2005 | 643.5127 | 16 | 106 | 278 | 627 | 1724 |
| Simulated values with $k=3$ |  |  |  |  |  |  |  |  |  |
| 50 | 5 | 1.3408 | 501.1229 | 854.1553 | 10 | 65 | 191 | 520 | 2144 |
| 50 | 11 | 0.8399 | 502.4958 | 826.2032 | 8 | 58 | 188 | 557 | 2140 |
| 100 | 5 | 2.0200 | 496.4873 | 717.9705 | 14 | 92 | 249 | 593 | 1826 |
| 100 | 11 | 1.3878 | 500.8659 | 784.5804 | 12 | 75 | 216 | 562 | 1990 |
| 150 | 5 | 2.2703 | 501.3947 | 659.0295 | 18 | 105 | 278 | 629 | 1736 |
| 150 | 11 | 1.7101 | 500.8260 | 740.0172 | 14 | 87 | 239 | 587 | 1912 |
| 300 | 5 | 2.5484 | 501.3179 | 590.1057 | 21 | 122 | 311 | 660 | 1628 |
| 300 | 11 | 2.1331 | 508.6202 | 651.5977 | 18 | 119 | 288 | 644 | 1745 |

Table-3. Performance comparisons for $m=100, n=5$ between various competetive charts for the Normal $(\theta, \delta)$ distribution with $\operatorname{ARL}_{0}=500$.

| $\theta$ | Shewhart Lepage Chart | Shewhart Cucconi Chart | CUSUM Lepage chart |  |  | CUSUM Cucconi chart |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $k=0$ | $k=3$ | $k=6$ | $k=0$ | $k=1.5$ | $k=3.0$ |
| $\delta=0.50$ |  |  |  |  |  |  |  |  |
| 0 | $\begin{gathered} >2200(* *) \\ 57,419,1478,4959 \end{gathered}$ | $\begin{gathered} >2200\left({ }^{* *}\right) \\ 57,444,1598, \# \end{gathered}$ | $\begin{gathered} 36.6(154.0) \\ 10,15,22,33,74 \end{gathered}$ | $\begin{gathered} >900\left({ }^{(* *)}\right. \\ 10,682691080, \#, \end{gathered}$ | $\begin{gathered} >2100\left({ }^{* *}\right) \\ 48,356,1299,4588, \# \end{gathered}$ | $\begin{gathered} 36.0(105.4) \\ 14,20,26,37,71 \end{gathered}$ | $>4900(* *)$ <br> \#, \#, \#, \#, \# | $>4900(* *)$ <br> \#, \#, \#, \#, \# |
| 0.25 | $\begin{aligned} & >2507.2(1960.7) \\ & 83,604,1994, \text {, \#, \# } \end{aligned}$ | $\begin{gathered} >2600(* *) \\ 83,675,2036,, \#, \# \end{gathered}$ | $\begin{gathered} 31.3(74.7) \\ 12,18,24,34,63 \end{gathered}$ | $>1400\left(^{* *}\right)$ $19,154,632,2323, \#$ | $\begin{gathered} >2400\left(^{(* *)}\right. \\ 73,543,1872, \#, \# \end{gathered}$ | $\begin{gathered} 30.0(35.7) \\ 15,20,2534,56 \end{gathered}$ | $\begin{gathered} >4700(* *) \\ 2721, \#, \#, \#, \# \end{gathered}$ | $\begin{gathered} >4700(* *) \\ 2588, \#, \#, \#, \# \end{gathered}$ |
| 0.5 | $\begin{gathered} >1600\left(^{* *}\right) \\ 23,201,782,2845, \# \end{gathered}$ | $\begin{gathered} >1700 \text { (**) }^{* 3}, 322,912,3895, \# \end{gathered}$ | $\begin{gathered} 22.4(9.1) \\ 11,17,21,26,38 \end{gathered}$ | $\begin{gathered} >1200\left({ }^{* *}\right) \\ 14,117,475,1694, \# \end{gathered}$ | $\begin{gathered} >1600\left(^{(* *)}\right. \\ 22,190,761,2790, \# \end{gathered}$ | $\begin{gathered} 20.8(7.6) \\ 11,16,20,24,34 \end{gathered}$ | $>2800$ (**) <br> 29, 441, 3048, \#, \# | $\begin{gathered} >2900(* *) \\ 52,595,3508, \text {, \#, \# } \end{gathered}$ |
| 0.75 | $\begin{gathered} 264.3(712.4) \\ 2,13,46,167,1254 \end{gathered}$ | $\begin{gathered} 285.1(756.3) \\ 2,33,65,199,1363 \end{gathered}$ | $\begin{gathered} 12.2(5.2) \\ 5,8,11,15,22 \end{gathered}$ | $\begin{gathered} 168.5(570.97) \\ 2,7,20,77,730 \end{gathered}$ | $\begin{gathered} 257.6(705.7) \\ 2,12,42,158,1215 \end{gathered}$ | $\begin{gathered} 11.6(4.6) \\ 5,8,11,14,20 \end{gathered}$ | $\begin{gathered} 399.2(1042.9) \\ 2,9,34,178,2777 \end{gathered}$ | $\begin{gathered} 575.9(1199.3) \\ 2,21,90,402,4325 \end{gathered}$ |
| 1.0 | $\begin{gathered} 18.0(76.6) \\ 1,2,5,14,61 \end{gathered}$ | $\begin{gathered} 23.0(82.3) \\ 1,2,8,32,78 \end{gathered}$ | $\begin{gathered} 6.1(2.6) \\ 3,4,6,7,11 \end{gathered}$ | $\begin{gathered} 7.3(33.1) \\ 1,2,3,6,20 \end{gathered}$ | $\begin{gathered} 15.9(65.9) \\ 1,2,5,12,55 \end{gathered}$ | $\begin{gathered} 6.0(2.6) \\ 2,4,6,7,11 \end{gathered}$ | $\begin{aligned} & 13.3(113.8) \\ & 1,2,4,8,30 \end{aligned}$ | $\begin{gathered} 36.3(192.7) \\ 1,2,6,19,116 \end{gathered}$ |
| 1.5 | $\begin{gathered} 1.3(0.8) \\ 1,1,1,1,3 \end{gathered}$ | $\begin{gathered} 1.4(0.9) \\ 1,1,1,1,3 \end{gathered}$ | $\begin{gathered} 2.6(0.7) \\ 2,2,2,3,4 \end{gathered}$ | $\begin{gathered} 1.2(0.5) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.3(0.7) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 2.5(0.8) \\ 2,2,2,3,4 \end{gathered}$ | $\begin{gathered} 1.3(0.6) \\ 1,1,1,2,2 \end{gathered}$ | $\begin{gathered} 1.4(0.9) \\ 1,1,1,2,3 \end{gathered}$ |
| 2 | $\begin{gathered} \hline 1.0(0.1) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} \hline 1.0(0.1) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 2.0(0.1) \\ 2,2,2,2,2 \end{gathered}$ | $\begin{gathered} 1.0(0.1) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.1) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.7(0.5) \\ 1,1,2,2,2 \end{gathered}$ | $\begin{gathered} \hline 1.0(0.1) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.1) \\ 1,1,1,1,1 \end{gathered}$ |
| 3 | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 2.0(0.0) \\ 2,2,2,2,2 \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.1) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ |
| $\delta=1.00$ |  |  |  |  |  |  |  |  |
| 0 | $\begin{gathered} 503.2(679.3) \\ 18,103,274,625,1767 \end{gathered}$ | $\begin{gathered} 495.5(709.9) \\ 16,93,249,591,1831 \end{gathered}$ | $\begin{gathered} 498.98(851.2) \\ 35,89,198,485,2101 \end{gathered}$ | $\begin{gathered} 494.2(670.97) \\ 18,101,263,610,1750 \end{gathered}$ | $510.6(679.1)$ $19,105,280,634,1790$ | $\begin{gathered} \hline 504.1(879.7) \\ 27,77,183,492,2219 \end{gathered}$ | $\begin{gathered} 503.3(753.2) \\ 12,86,239,584,1914 \end{gathered}$ | $\begin{gathered} 496.5(718.0) \\ 14,92,249,593,1826 \end{gathered}$ |
| 0.25 | $238.4(379.6)$ $8,43,116,277,861$ | $\begin{gathered} 258.1(417.7) \\ 8,45,121,295,961 \end{gathered}$ | $\begin{gathered} 170.8(384.4) \\ 18,40,73,151,578 \end{gathered}$ | $223.4(361.9)$ $7,39,106,257,826$ | $238.1(372.3)$ $8,44,117,279,854$ | $\begin{gathered} 170.4(388.7) \\ 15,35,68,148,606 \end{gathered}$ | $\begin{gathered} 254.1(444.9) \\ 5,38,110,280,963 \end{gathered}$ | $\begin{gathered} 267.1(448.2) \\ 7,43,122,303,985 \end{gathered}$ |
| 0.5 | $\begin{gathered} 63.8(98.0) \\ 3,13,33,76,224 \end{gathered}$ | $\begin{gathered} 71.1(120.9) \\ 3,13,34,81,251 \end{gathered}$ | $\begin{gathered} 32.3(38.8) \\ 8,16,24,38,80 \end{gathered}$ | $\begin{gathered} 53.96(89.9) \\ 2,11,27,62,191 \end{gathered}$ | $\begin{gathered} 62.1(98.9) \\ 2,12,32,73,216 \end{gathered}$ | $\begin{gathered} 30.2(42.8) \\ 6,14,22,35,77 \end{gathered}$ | $\begin{gathered} 60.8(114.4) \\ 2,10,27,67,224 \end{gathered}$ | $\begin{gathered} 70.5(125.7) \\ 2,12,34,81,252 \end{gathered}$ |
| 0.75 | $\begin{gathered} 19.0(25.4) \\ 1,5,11,24,63 \end{gathered}$ | $\begin{gathered} 20.7(29.8) \\ 1,5,11,25,70 \end{gathered}$ | $\begin{gathered} 13.0(7.8) \\ 5,8,11,16,27 \end{gathered}$ | $\begin{gathered} 14.6(19.4) \\ 1,4,8,18,48 \end{gathered}$ | $\begin{gathered} 18.1(24.9) \\ 1,4,10,22,60 \end{gathered}$ | $\begin{gathered} 11.8(7.5) \\ 3,7,10,15,25 \end{gathered}$ | $\begin{gathered} 14.9(22.2) \\ 1,3,8,18,50 \end{gathered}$ | $\begin{gathered} 19.5(30.9) \\ 1,4,10,23,66 \end{gathered}$ |
| 1.0 | $\begin{gathered} 7.3(8.4) \\ 1,2,5,9,22 \end{gathered}$ | $\begin{gathered} 7.7(9.3) \\ 1,2,5,10,24 \end{gathered}$ | $\begin{gathered} 7.2(3.4) \\ 3,5,7,9,14 \end{gathered}$ | $\begin{gathered} 5.4(5.7) \\ 1,2,4,7,16 \end{gathered}$ | $\begin{gathered} 6.9(7.9) \\ 1,2,4,9,21 \end{gathered}$ | $\begin{gathered} 6.6(3.5) \\ 2,8,6,8,13 \end{gathered}$ | $\begin{gathered} 5.3(6.0) \\ 1,2,3,7,16 \end{gathered}$ | $\begin{gathered} 7.0(8.7) \\ 1,2,4,9,22 \end{gathered}$ |
| 1.5 | $\begin{gathered} \hline 2.1(1.7) \\ 1,1,2,3,5 \end{gathered}$ | $\begin{gathered} 2.1(1.7) \\ 1,1,1,3,5 \end{gathered}$ | $\begin{gathered} 3.5(1.2) \\ 2,3,3,4,6 \end{gathered}$ | $\begin{gathered} 1.8(1.1) \\ 1,1,2,2,4 \end{gathered}$ | $\begin{gathered} \hline 2.0(1.5) \\ 1,1,2,2,5 \end{gathered}$ | $\begin{gathered} 3.2(1.3) \\ 2,2,3,4,6 \end{gathered}$ | $\begin{gathered} 1.8(1.1) \\ 1,1,2,2,4 \end{gathered}$ | $\begin{gathered} 2.0(1.4) \\ 1,1,2,2,5 \end{gathered}$ |
| 2 | $\begin{gathered} 1.2 \quad(0.5) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.2(0.5) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 2.4(0.6) \\ 2,2,2,3,3 \end{gathered}$ | $\begin{gathered} 1.2(0.4) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.2(0.5) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} \hline 2.1(0.7) \\ 1,2,2,2,3 \end{gathered}$ | $\begin{gathered} 1.2(0.4) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.2(0.5) \\ 1,1,1,1,2 \end{gathered}$ |
| 3 | $\begin{gathered} 1.0(0.1) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.1) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} \hline 2.0(0.05) \\ 2,2,2,2,2 \\ \hline \end{gathered}$ | $\begin{gathered} 1.0(0.1) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{aligned} & 1.0(0.05) \\ & 1,11,1,1 \end{aligned}$ | $\begin{gathered} 1.2(0.4) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.1) \\ 1,1,1,1,1 \end{gathered}$ |
| $\delta=1.25$ |  |  |  |  |  |  |  |  |
| 0 | $\begin{gathered} 105.1(130.4) \\ 5,26,63,135,346 \end{gathered}$ | $\begin{gathered} 75.4(96.0) \\ 4,18,44,96,248 \end{gathered}$ | $\begin{gathered} 55.4(60.3) \\ 11,23,38,62,141 \\ \hline \end{gathered}$ | $\begin{gathered} 90.6(114.3) \\ 4,21,54,116,300 \end{gathered}$ | $\begin{gathered} 101.4(124.3) \\ 5,25,61,131,329 \end{gathered}$ | $\begin{gathered} 39.3(41.4) \\ 8,18,29,47,103 \end{gathered}$ | $\begin{gathered} 63.0(87.7) \\ 2,13,35,79,215 \end{gathered}$ | $\begin{gathered} 73.6(95.7) \\ 3,17,43,94,248 \end{gathered}$ |
| 0.25 | $\begin{gathered} 67.1 \quad(86.0) \\ 3,16,40,86,220 \\ \hline \end{gathered}$ | $\begin{array}{cl} \hline 54.3(70.0) \\ 3,13,32,69,180 \end{array}$ | $\begin{gathered} 38.3(35.7) \\ 10,19,29,46,94 \\ \hline \end{gathered}$ | $\begin{gathered} 56.96(75.3) \\ 3,13,33,71,191 \end{gathered}$ | $\begin{gathered} 65.7(84.5) \\ 3,15,39,84,220 \\ \hline \end{gathered}$ | $\begin{gathered} 29.4(27.5) \\ 7,14,23,36,74 \end{gathered}$ | $\begin{gathered} 44.5(63.7) \\ 2,9,24,56,151 \end{gathered}$ | $\begin{gathered} \hline 53.2(71.0) \\ 2,12,31,67,181 \end{gathered}$ |
| 0.5 | $\begin{array}{cc} 29.0(35.9) \\ 2,7,17,37,95 \end{array}$ | $\begin{gathered} 26.0(32.7) \\ 1,6,16,33,85 \end{gathered}$ | $\begin{gathered} 20.3(13.9) \\ 6,11,17,25,45 \end{gathered}$ | $\begin{gathered} 23.7(30.4) \\ 2,6,14,30,77 \end{gathered}$ | $\begin{gathered} 27.9(34.5) \\ 2,7,17,36,91 \end{gathered}$ | $\begin{gathered} 16.5(11.7) \\ 4,9,14,21,37 \end{gathered}$ | $\begin{gathered} 20.5(28.1) \\ 2,5,12,26,68 \end{gathered}$ | $\begin{gathered} 24.9(32.4) \\ 2,6,15,32,81 \end{gathered}$ |


| 0.75 | $\begin{gathered} \hline 12.9(15.0) \\ 1,4,8,17,40 \end{gathered}$ | $\begin{gathered} 12.2(14.3) \\ 1,3,8,16,39 \end{gathered}$ | $\begin{gathered} 11.4(6.2) \\ 4,7,10,14,23 \\ \hline \end{gathered}$ | $\begin{gathered} 10.2(11.4) \\ 1,3,7,13,31 \end{gathered}$ | $\begin{gathered} 12.4(14.2) \\ 1,3,8,16,38 \end{gathered}$ | $\begin{gathered} 9.7(5.8) \\ 2,6,9,12,20 \end{gathered}$ | $\begin{gathered} 9.0(10.6) \\ 1,2,6,11,28 \end{gathered}$ | $\begin{gathered} 11.2(13.4) \\ 1,3,7,14,36 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.0 | $\begin{gathered} \hline 6.4(6.7) \\ 1,2,4,8,19 \\ \hline \end{gathered}$ | $\begin{array}{cc} \hline 6.2 & (6.5) \\ 1,2,4,8,18 \\ \hline \end{array}$ | $\begin{gathered} 7.3(3.5) \\ 3,5,7,9,14 \\ \hline \end{gathered}$ | $\begin{gathered} 5.1(4.9) \\ 1,2,4,6,14 \end{gathered}$ | $\begin{gathered} \hline 6.1(6.3) \\ 1,2,4,8,18 \\ \hline \end{gathered}$ | $\begin{gathered} 6.3(3.4) \\ 2,4,6,8,13 \\ \hline \end{gathered}$ | $\begin{gathered} \hline 4.6(4.5) \\ 1,2,3,6,13 \\ \hline \end{gathered}$ | $\begin{gathered} 5.6(6.0) \\ 1,2,4,7,17 \\ \hline \end{gathered}$ |
| 1.5 | $\begin{gathered} \hline 2.4 \quad(2.0) \\ 1,1,2,3,6 \end{gathered}$ | $\begin{gathered} 2.3(1.9) \\ 1,1,2,3,6 \end{gathered}$ | $\begin{array}{r} 3.8(1.5) \\ 2,3,4,5,7 \\ \hline \end{array}$ | $\begin{gathered} 2.1(1.4) \\ 1,1,2,3,5 \end{gathered}$ | $\begin{gathered} 2.3(1.8) \\ 1,1,2,3,6 \end{gathered}$ | $\begin{gathered} 3.4(1.6) \\ 2,2,3,4,6 \end{gathered}$ | $\begin{gathered} 2.0(1.3) \\ 1,1,2,2,5 \end{gathered}$ | $\begin{gathered} 2.2(1.7) \\ 1,1,2,3,5 \end{gathered}$ |
| 2 | $\begin{array}{cc} \hline 1.4 \quad(0.8) \\ 1,1,1,2,3 \end{array}$ | $\begin{gathered} 1.4(0.7) \\ 1,1,1,2,3 \end{gathered}$ | $\begin{array}{r} 2.6(0.8) \\ 2,2,2,3,4 \\ \hline \end{array}$ | $\begin{gathered} 1.4(0.6) \\ 1,1,1,2,3 \end{gathered}$ | $\begin{gathered} 1.4(0.7) \\ 1,1,1,2,3 \end{gathered}$ | $\begin{gathered} 2.3(0.9) \\ 1,2,2,3,4 \end{gathered}$ | $\begin{gathered} 1.3(0.6) \\ 1,1,1,2,2 \end{gathered}$ | $\begin{gathered} 1.3(0.7) \\ 1,1,1,2,3 \end{gathered}$ |
| 3 | $\begin{array}{cc} \hline 1.0 & (0.2) \\ 1,1,1,1,1 \\ \hline \end{array}$ | $\begin{gathered} 1.0(0.1) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 2.0(0.1) \\ 2,2,2,2,2 \\ \hline \end{gathered}$ | $\begin{gathered} 1.0(0.1) \\ 1,1,1,1,1 \\ \hline \end{gathered}$ | $\begin{gathered} 1.0(0.1) \\ 1,1,1,1,1 \\ \hline \end{gathered}$ | $\begin{gathered} 1.4(0.5) \\ 1,1,1,2,2 \end{gathered}$ | $\begin{gathered} 1.0(0.1) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.1) \\ 1,1,1,1,1 \end{gathered}$ |


| 0 | $\begin{gathered} 38.3(42.9) \\ 2,10,24,51,121 \end{gathered}$ | $\begin{gathered} 24.4(27.6) \\ 2,7,15,32,77 \end{gathered}$ | $\begin{gathered} 21.7(13.1) \\ 8,13,19,27,46 \\ \hline \end{gathered}$ | $\begin{gathered} 29.4(33.9) \\ 2,8,18,38,93 \end{gathered}$ | $\begin{gathered} \hline 36.9(41.6) \\ 2,10,24,49,116 \\ \hline \end{gathered}$ | $\begin{gathered} 15.2(9.5) \\ 4,9,13,19,33 \\ \hline \end{gathered}$ | $\begin{gathered} 17.8(21.2) \\ 2,5,11,23,57 \end{gathered}$ | $\begin{gathered} 22.8(26.4) \\ 2,6,14,30,73 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.25 | $\begin{gathered} 29.4(33.2) \\ 2,8,19,39,93 \end{gathered}$ | $\begin{gathered} 20.4(23.0) \\ 1,6,13,27,64 \end{gathered}$ | $\begin{gathered} 18.9(10.96) \\ 7,11,17,23,39 \end{gathered}$ | $\begin{gathered} 22.8(25.8) \\ 2,6,15,30,72 \end{gathered}$ | $\begin{gathered} 28.2(31.9) \\ 2,8,18,37,88 \\ \hline \end{gathered}$ | $\begin{gathered} 13.7(8.3) \\ 4,8 ., 12,17,29 \\ \hline \end{gathered}$ | $\begin{gathered} \hline 15.1(17.5) \\ 1,4,9,20,48 \end{gathered}$ | $\begin{gathered} 19.3(22.9) \\ 1,5,12,25,62 \end{gathered}$ |
| 0.5 | $\begin{gathered} \hline 17.2(19.0) \\ 1,5,11,23,54 \end{gathered}$ | $\begin{array}{cc} \hline 13.6(15.0) \\ 1,4,9,18,42 \end{array}$ | $\begin{gathered} 13.9(7.5) \\ 5,9,12,17,28 \\ \hline \end{gathered}$ | $\begin{gathered} 13.5(14.7) \\ 1,4,9,18,42 \end{gathered}$ | $\begin{gathered} 16.7(18.7) \\ 1,5,11,22,52 \end{gathered}$ | $\begin{gathered} 10.7(6.3) \\ 3,6,10,14,22 \end{gathered}$ | $\begin{gathered} 9.8(10.9) \\ 1,3,6,13,30 \end{gathered}$ | $\begin{gathered} 12.6(14.4) \\ 1,3,8,16,40 \end{gathered}$ |
| 0.75 | $\begin{gathered} 9.7(10.2) \\ 1,3,6,13,29 \end{gathered}$ | $\begin{gathered} 8.3(8.8) \\ 1,3,5,11,25 \end{gathered}$ | $\begin{gathered} 9.7(4.8) \\ 4,6,9,12,19 \\ \hline \end{gathered}$ | $\begin{gathered} 7.8(7.7) \\ 1,3,5,10,22 \end{gathered}$ | $\begin{gathered} 9.3(9.8) \\ 1,3,6,12,28 \end{gathered}$ | $\begin{gathered} 7.8(4.3) \\ 2,5,7,10,16 \end{gathered}$ | $\begin{gathered} 6.2(6.3) \\ 1,2,4,8,18 \end{gathered}$ | $\begin{gathered} 7.6(8.2) \\ 1,2,5,10,23 \end{gathered}$ |
| 1.0 | $\begin{array}{cc} \hline 5.8(5.8) \\ 1,2,4,8,17 \\ \hline \end{array}$ | $\begin{gathered} 5.2(5.1) \\ 1,2,4,7,15 \end{gathered}$ | $\begin{gathered} 6.99(3.2) \\ 3,5,6,9,13 \\ \hline \end{gathered}$ | $\begin{gathered} 4.7(4.3) \\ 1,2,3,6,13 \\ \hline \end{gathered}$ | $\begin{gathered} 5.6(5.4) \\ 1,2,4,7,16 \end{gathered}$ | $\begin{gathered} 5.8(3.1) \\ 2,4,5,8,11 \end{gathered}$ | $\begin{gathered} 3.9(3.5) \\ 1,2,3,5,11 \end{gathered}$ | $\begin{gathered} 4.7(4.6) \\ 1,2,3,6,14 \end{gathered}$ |
| 1.5 | $\begin{gathered} 2.6(2.2) \\ 1,1,2,3,7 \end{gathered}$ | $\begin{gathered} 2.4 \quad(2.0) \\ 1,1,2,3,6 \end{gathered}$ | $\begin{gathered} 4.1(1.6) \\ 2,3,4,5,7 \\ \hline \end{gathered}$ | $\begin{gathered} 2.3(1.6) \\ 1,1,2,3,5 \end{gathered}$ | $\begin{gathered} 2.5(2.0) \\ 1,1,2,3,6 \end{gathered}$ | $\begin{gathered} 3.5(1.7) \\ 2,2,3,5,7 \end{gathered}$ | $\begin{gathered} 2.1(1.4) \\ 1,1,2,3,5 \end{gathered}$ | $\begin{gathered} 2.3(1.8) \\ 1,1,2,3,6 \end{gathered}$ |
| 2 | $\begin{gathered} \hline 1.6(1.0) \\ 1,1,1,2,4 \\ \hline \end{gathered}$ | $\begin{gathered} \hline 1.5(0.9) \\ 1,1,1,2,3 \\ \hline \end{gathered}$ | $\begin{gathered} 2.9(0.9) \\ 2,2,3,3,5 \end{gathered}$ | $\begin{gathered} 1.5(0.8) \\ 1,1,1,2,3 \\ \hline \end{gathered}$ | $\begin{gathered} 1.6(0.9) \\ 1,1,1,2,3 \\ \hline \end{gathered}$ | $\begin{gathered} 2.5(1.0) \\ 1,2,2,3,4 \end{gathered}$ | $\begin{gathered} 1.4(0.7) \\ 1,1,1,2,3 \\ \hline \end{gathered}$ | $\begin{gathered} 1.5(0.8) \\ 1,1,1,2,3 \end{gathered}$ |
| 3 | $\begin{array}{cc} \hline 1.1 \quad(0.3) \\ 1,1,1,1,2 \end{array}$ | $\begin{gathered} 1.1(0.2) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 2.1(0.3) \\ 2,2,2,2,3 \\ \hline \end{gathered}$ | $\begin{gathered} 1.1(0.2) \\ 1,1,1,1,2 \\ \hline \end{gathered}$ | $\begin{gathered} 1.1(0.2) \\ 1,1,1,1,2 \\ \hline \end{gathered}$ | $\begin{gathered} 1.5(0.6) \\ 1,1,1,2,2 \end{gathered}$ | $\begin{gathered} 1.0(0.2) \\ 1,1,1,1,2 \\ \hline \end{gathered}$ | $\begin{gathered} 1.0(0.2) \\ 1,1,1,1,1 \\ \hline \end{gathered}$ |

$\delta=1.75$

| 0 | $\begin{gathered} 19.4 \quad(20.6) \\ 1,6,13,26,60 \end{gathered}$ | $\begin{gathered} 11.7(12.4) \\ 1,3,8,16,36 \end{gathered}$ | $\begin{gathered} 13.5(6.6) \\ 5,9,12,17,26 \end{gathered}$ | $\begin{gathered} 13.8(14.2) \\ 1,4,9,18,41 \end{gathered}$ | $\begin{gathered} 18.3(19.5) \\ 1,5,12,24,57 \end{gathered}$ | $\begin{gathered} 9.3(5.0) \\ 3,6,9,12,18 \end{gathered}$ | $\begin{gathered} 8.2(8.6) \\ 1,2,5,11,25 \end{gathered}$ | $\begin{gathered} 10.7(11.5) \\ 1,3,7,14,33 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.25 | $\begin{gathered} 16.5(17.7) \\ 1,5,11,22,51 \end{gathered}$ | $\begin{gathered} 10.7(11.1) \\ 1,3,7,14,32 \end{gathered}$ | $\begin{gathered} 12.5(6.1) \\ 5,8,11,15,24 \end{gathered}$ | $\begin{gathered} 11.8(12.1) \\ 1,4,8,15,35 \end{gathered}$ | $\begin{gathered} 15.6(16.3) \\ 1,5,10,21,47 \end{gathered}$ | $\begin{gathered} 8.9(4.8) \\ 2,6,8,11,18 \end{gathered}$ | $\begin{gathered} 7.5(7.6) \\ 1,2,5,10,22 \end{gathered}$ | $\begin{gathered} 9.9(10.7) \\ 1,3,6,13,30 \end{gathered}$ |
| 0.5 | $\begin{gathered} 11.6(12.1) \\ 1,3,8,15,35 \end{gathered}$ | $\begin{gathered} 8.4(8.6) \\ 1,3,6,11,25 \end{gathered}$ | $\begin{gathered} 10.4(4.99) \\ 4,7,9,13,20 \end{gathered}$ | $\begin{gathered} 8.8(8.8) \\ 1,3,6,12,26 \end{gathered}$ | $\begin{gathered} 11.1(11.3) \\ 1,3,7,15,33 \end{gathered}$ | $\begin{gathered} 7.7(4.1) \\ 2,5,7,10,15 \end{gathered}$ | $\begin{gathered} 6.0(5.8) \\ 1,2,4,8,17 \end{gathered}$ | $\begin{gathered} 7.5(7.9) \\ 1,2,5,10,23 \end{gathered}$ |
| 0.75 | $\begin{gathered} 7.9(7.8) \\ 1,3,5,10,23 \end{gathered}$ | $\begin{gathered} 6.1(6.0) \\ 1,2,4,8,18 \end{gathered}$ | $\begin{gathered} 8.3(3.8) \\ 3,6,8,10,15 \end{gathered}$ | $\begin{gathered} 6.1(5.7) \\ 1,2,4,8,17 \end{gathered}$ | $\begin{gathered} 7.5(7.5) \\ 1,2,5,10,22 \end{gathered}$ | $\begin{gathered} 6.4(3.3) \\ 2,4,6,8,13 \end{gathered}$ | $\begin{gathered} 4.5(4.1) \\ 1,2,3,6,12 \end{gathered}$ | $\begin{gathered} 5.5(5.5) \\ 1,2,4,7,16 \end{gathered}$ |
| 1.0 | $\begin{gathered} 5.2(5.0) \\ 1,2,4,7,15 \end{gathered}$ | $\begin{array}{cc} \hline 4.4(4.2) \\ 1,2,3,6,13 \end{array}$ | $\begin{gathered} 6.5(2.9) \\ 3,4,6,8,12 \end{gathered}$ | $\begin{gathered} 4.3(3.6) \\ 1,2,3,6,11 \end{gathered}$ | $\begin{gathered} 5.0(4.6) \\ 1,2,4,7,14 \end{gathered}$ | $\begin{gathered} 5.2(2.7) \\ 2,3,5,7,10 \end{gathered}$ | $\begin{gathered} 3.4(2.9) \\ 1,2,2,4,9 \end{gathered}$ | $\begin{gathered} 4.0(3.7) \\ 1,2,3,5,11 \end{gathered}$ |
| 1.5 | $\begin{array}{cc} 2.7 & (2.3) \\ 1,1,2,4,7 \end{array}$ | $\begin{gathered} 2.5 \quad(2.0) \\ 1,1,2,3,6 \end{gathered}$ | $\begin{gathered} 4.3(1.7) \\ 2,3,4,5,7 \end{gathered}$ | $\begin{gathered} 2.4(1.7) \\ 1,1,2,3,6 \end{gathered}$ | $\begin{gathered} 2.6(2.1) \\ 1,1,2,3,7 \end{gathered}$ | $\begin{gathered} 3.6(1.7) \\ 2,2,3,5,7 \end{gathered}$ | $\begin{gathered} 2.1(1,4) \\ 1,1,2,3,5 \end{gathered}$ | $\begin{gathered} 2.3(1.8) \\ 1,1,2,3,6 \end{gathered}$ |
| 2 | $\begin{gathered} 1.7(1.1) \\ 1,1,1,2,4 \end{gathered}$ | $\begin{gathered} 1.6(1.0) \\ 1,1,1,2,4 \end{gathered}$ | $\begin{gathered} 3.1(1.1) \\ 2,2,3,4,5 \end{gathered}$ | $\begin{gathered} 1.6(0.9) \\ 1,1,1,2,3 \end{gathered}$ | $\begin{gathered} 1.7(1.1) \\ 1,1,1,2,4 \end{gathered}$ | $\begin{gathered} 2.6(1.1) \\ 1,2,2,3,5 \end{gathered}$ | $\begin{gathered} 1.5(0.8) \\ 1,1,1,2,3 \end{gathered}$ | $\begin{gathered} 1.6(0.9) \\ 1,1,1,2,3 \end{gathered}$ |
| 3 | $\begin{gathered} 1.1(0.4) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{array}{r} 1.1(0.3) \\ 1,1,1,1,2 \\ \hline \end{array}$ | $\begin{gathered} 2.2(0.4) \\ 2,2,2,2,3 \\ \hline \end{gathered}$ | $\begin{gathered} 1.1(0.3) \\ 1,1,1,1,2 \\ \hline \end{gathered}$ | $\begin{gathered} 1.1(0.3) \\ 1,1,1,1,2 \\ \hline \end{gathered}$ | $\begin{gathered} 1.7(0.7) \\ 1,1,2,2,3 \end{gathered}$ | $\begin{gathered} 1.1(0.3) \\ 1,1,1,1,2 \\ \hline \end{gathered}$ | $\begin{gathered} 1.1(0.3) \\ 1,1,1,1,2 \\ \hline \end{gathered}$ |

$\delta=2.00$

| 0 | $\begin{gathered} 11.8(12.0) \\ 1,4,8,16,36 \end{gathered}$ | $\begin{array}{cc} 7.1 & (7.0) \\ 1,2,5,9,21 \end{array}$ | $\begin{array}{r} 9.8(4.3) \\ 4,7,9,12,18 \\ \hline \end{array}$ | $\begin{gathered} 8.2(7.8) \\ 1,3,6,11,23 \\ \hline \end{gathered}$ | $\begin{gathered} 11.1(11.2) \\ 1,3,8,15,33 \end{gathered}$ | $\begin{gathered} 6.9(3.5) \\ 2,4,6,9,13 \end{gathered}$ | $\begin{gathered} 5.1(4.6) \\ 1,2,4,7,14 \end{gathered}$ | $\begin{gathered} 6.4(6.4) \\ 1,2,4,8,19 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.25 | $\begin{gathered} 10.6(10.6) \\ 1,3,7,14,32 \end{gathered}$ | $\begin{gathered} 6.8(6.8) \\ 1,2,5,9,20 \end{gathered}$ | $\begin{gathered} 9.4(4.1) \\ 4,6,9,12,17 \\ \hline \end{gathered}$ | $\begin{gathered} 7.7(7.2) \\ 1,3,5,10,22 \end{gathered}$ | $\begin{gathered} 10.0(10.1) \\ 1,3,7,13,30 \end{gathered}$ | $\begin{array}{cc} 6.6(3.4) \\ 2,4,6,9,13 \end{array}$ | $\begin{gathered} 4.8(4.3) \\ 1,2,3,6,13 \\ \hline \end{gathered}$ | $\begin{gathered} 6.0(6.1) \\ 1,2,4,8,18 \end{gathered}$ |
| 0.5 | $\begin{gathered} 8.5(8.4) \\ 1,3,6,11,25 \end{gathered}$ | $\begin{gathered} 5.8(5.6) \\ 1,2,4,8,17 \end{gathered}$ | $\begin{gathered} 8.4(3.7) \\ 4,6,8,10,15 \\ \hline \end{gathered}$ | $\begin{gathered} 6.3(5.8) \\ 1,2,5,8,18 \end{gathered}$ | $\begin{gathered} 8.1(8.0) \\ 1,3,6,11,24 \end{gathered}$ | $\begin{gathered} 6.1(3.1) \\ 2,4,6,9,12 \end{gathered}$ | $\begin{gathered} 4.3(3.7) \\ 1,2,3,6,11 \end{gathered}$ | $\begin{gathered} 5.3(5.2) \\ 1,2,4,7,15 \end{gathered}$ |
| 0.75 | $\begin{gathered} 6.3(6.1) \\ 1,2,4,8,18 \end{gathered}$ | $\begin{gathered} 4.8(4.4) \\ 1,2,3,6,13 \end{gathered}$ | $\begin{gathered} 7.2(3.1) \\ 3,5,7,9,13 \end{gathered}$ | $\begin{gathered} 4.9(4.2) \\ 1,2,4,6,13 \end{gathered}$ | $\begin{gathered} 6.1(5.7) \\ 1,2,4,8,17 \end{gathered}$ | $\begin{gathered} 5.4(2.7) \\ 2,3,5,7,10 \end{gathered}$ | $\begin{gathered} 3.6(3.0) \\ 1,2,3,5,10 \end{gathered}$ | $\begin{gathered} \hline 4.3(4.0) \\ 1,2,3,6,12 \end{gathered}$ |
| 1.0 | $\begin{gathered} 4.7(4.4) \\ 1,2,3,6,13 \end{gathered}$ | $\begin{array}{cc} 3.8(3.4) \\ 1,1,3,5,10 \end{array}$ | $\begin{gathered} 6.1(2.6) \\ 3,4,6,8,11 \end{gathered}$ | $\begin{gathered} 3.8(3.1) \\ 1,2,3,5,10 \end{gathered}$ | $\begin{gathered} 4.5(4.2) \\ 1,2,3,6,13 \end{gathered}$ | $\begin{gathered} 4.7(2.3) \\ 2,3,4,6,9 \end{gathered}$ | $\begin{gathered} 3.0(2.3) \\ 1,1,2,4,8 \end{gathered}$ | $\begin{gathered} 3.4(3.0) \\ 1,1,2,4,9 \end{gathered}$ |
| 1.5 | $\begin{gathered} 2.8(2.3) \\ 1,1,2,4,7 \end{gathered}$ | $\begin{gathered} 2.4(1.9) \\ 1,1,2,3,6 \end{gathered}$ | $\begin{gathered} 4.3(1.7) \\ 2,3,4,5,7 \end{gathered}$ | $\begin{gathered} 2.4(1.7) \\ 1,1,2,3,6 \\ \hline \end{gathered}$ | $\begin{gathered} 2.7(2.1) \\ 1,1,2,3,7 \end{gathered}$ | $\begin{gathered} 3.5(1.7) \\ 2,2,3,5,7 \end{gathered}$ | $\begin{gathered} 2.1(1.4) \\ 1,1,2,3,5 \end{gathered}$ | $\begin{gathered} 2.3(1.7) \\ 1,1,2,3,6 \end{gathered}$ |
| 2 | $\begin{gathered} \hline 1.9(1.3) \\ 1,1,1,2,4 \\ \hline \end{gathered}$ | $\begin{array}{cc} 1.7(1.1) \\ 1,1,2,3,4 \\ \hline \end{array}$ | $\begin{gathered} 3.3(1.1) \\ 2,2,3,4,5 \\ \hline \end{gathered}$ | $\begin{gathered} 1.7(1.0) \\ 1,1,1,2,4 \\ \hline \end{gathered}$ | $\begin{gathered} 1.8(1.2) \\ 1,1,1,2,4 \\ \hline \end{gathered}$ | $\begin{gathered} 2.7(1.2) \\ 1,2,2,3,5 \\ \hline \end{gathered}$ | $\begin{gathered} 1.6(0.9) \\ 1,1,1,2,3 \\ \hline \end{gathered}$ | $\begin{gathered} \hline 1.6(1.0) \\ 1,1,1,1,2 \\ \hline \end{gathered}$ |
| 3 | $\begin{gathered} \hline 1.2 \quad(0.5) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.2(0.4) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 2.3(0.5) \\ 2,2,2,2,3 \end{gathered}$ | $\begin{gathered} 1.2(0.4) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.2(0.5) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} \hline 1.8(0.7) \\ 1,1,2,2,3 \end{gathered}$ | $\begin{gathered} 1.2(0.4) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.2(0.4) \\ 1,1,1,1,2 \end{gathered}$ |

** indicates variance estimate is not meaningful and \# indicates the percentile value exceeds 5000 .

Table-4. Performance comparisons for $m=300, n=5$ between various competetive charts for the Normal $(\theta, \delta)$ distribution with $\operatorname{ARL}_{0}=500$.

| $\theta$ | Shewhart Lepage Chart | Shewhart Cucconi Chart | CUSUM Lepage chart |  |  | CUSUM Cucconi chart |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $k=0$ | $k=3$ | $k=6$ | $k=0$ | $k=1.5$ | $k=3.0$ |
| $\delta=0.50$ |  |  |  |  |  |  |  |  |
| 0 | $\begin{gathered} >2600\left(^{* *}\right) \\ 139,860,2414, \#, \# \end{gathered}$ | $\begin{gathered} >2700\left(^{(* *)}\right. \\ 139,920,2645, \#, \# \end{gathered}$ | $\begin{gathered} 26.9(12.5) \\ 13,19,24,32,50 \end{gathered}$ | $\begin{gathered} >1000\left({ }^{* *}\right) \\ 22,134,415,1221, \# \end{gathered}$ | $\begin{gathered} >3700(* *) \\ 328,2210, \#, \#, \# \end{gathered}$ | $\begin{gathered} 35.1(12.8) \\ 21,27,33,41,58 \end{gathered}$ | $>5000(* *)$ <br> \#, \#, \#, \#, \# | $>5000\left(^{* *}\right)$ <br> \#, \#, \#, \#, \# |
| 0.25 | $>3200\left(^{* *}\right)$ $226,1408,3947, \#, \#$ | $\begin{gathered} >3200\left(\left(^{* *}\right)\right. \\ 226,1464,4002, \text {, \#, \# } \end{gathered}$ | $\begin{gathered} 25.7(6.8) \\ 16,21,25,30,38 \end{gathered}$ | $>2100\left(^{* *}\right)$ $62,417,1382,4161, \#$ | $\begin{gathered} >4100(* *) \\ 600,3892, \#, \#, \# \end{gathered}$ | $\begin{gathered} 34.6(10.4) \\ 22,27,33,40,53 \end{gathered}$ | $>4900(* *)$ <br> \#, \#, \#, \#, \# | $>4900(* *)$ <br> \#, \#, \#, \#, \# |
| 0.5 | $\begin{gathered} >1800(* *) \\ 54,354,1087,2987, \# \end{gathered}$ | $\begin{gathered} >1800(* *) \\ 54,374,1155,3100, \# \end{gathered}$ | $\begin{gathered} 13.3(4.2) \\ 7,10,13,16,21 \end{gathered}$ | $\begin{gathered} >1900(* *) \\ 53,362,1181,3344, \# \end{gathered}$ | $\begin{gathered} >2400(* *) \\ 84,613,1999, \#, \# \end{gathered}$ | $\begin{gathered} 26.1(6.3) \\ 17,22,26,30,37 \end{gathered}$ | $\begin{gathered} >3000\left(^{(* *)}\right. \\ 102,877,3407, \#, \# \end{gathered}$ | $\begin{gathered} >3100\left({ }^{* *}\right) \\ 147,1097,3798, \#, \# \end{gathered}$ |
| 0.75 | $\begin{gathered} 114.0(235.5) \\ 3,17,47,118,423 \end{gathered}$ | $\begin{gathered} 136.3(235.5) \\ 3,19,52,129,452 \end{gathered}$ | $\begin{gathered} 6.5(2.0) \\ 4,5,6,8,10 \end{gathered}$ | $\begin{gathered} 70.5(197.2) \\ 3, .9,22,59,266 \end{gathered}$ | $\begin{gathered} 166.3(364.4) \\ 4,22,61,162,634 \end{gathered}$ | $\begin{gathered} 13.6(4.2) \\ 7,11,13,16,21 \end{gathered}$ | $\begin{gathered} 120.8(355.3) \\ 2,11,30,90,486 \end{gathered}$ | $\begin{gathered} 266.2(560.9) \\ 4,29,89,249,1078 \end{gathered}$ |
| 1.0 | $\begin{gathered} 9.4(13.3) \\ 1,2,5,11,31 \end{gathered}$ | $\begin{gathered} 10.4(18.0) \\ 1,2,5,11,31 \end{gathered}$ | $\begin{gathered} 2.8(0.6) \\ 2,2,3,3,4 \end{gathered}$ | $\begin{gathered} 4.5(4.0) \\ 1,2,3,5,11 \end{gathered}$ | $\begin{gathered} 9.5(14.5) \\ 1,3,5,11,31 \end{gathered}$ | $\begin{gathered} 6.7(2.3) \\ 3,5,7,8,11 \\ \hline \end{gathered}$ | $\begin{gathered} 5.1(5.8) \\ 1,2,4,6,13 \end{gathered}$ | $\begin{gathered} 12.1(22.6) \\ 1,2,6,13,42 \end{gathered}$ |
| 1.5 | $\begin{gathered} 1.2(0.5) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.3(0.6) \\ 1,1,1,1,3 \end{gathered}$ | $\begin{gathered} 2.0(0.1) \\ 2,2,2,2,2 \end{gathered}$ | $\begin{gathered} 1.3(0.5) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.2(0.5) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 2.7(0.8) \\ 2,2,3,3,4 \end{gathered}$ | $\begin{gathered} 1.3(0.5) \\ 1,1,1,2,2 \end{gathered}$ | $\begin{gathered} 1.3(0.6) \\ 1,1,1,1,2 \end{gathered}$ |
| 2 | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 2.0(0.0) \\ 2,2,2,2,2 \end{gathered}$ | $\begin{gathered} 1.0(0.1) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.1) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 2.0(0.3) \\ 2,2,2,2,2 \end{gathered}$ | $\begin{gathered} 1.0(0.1) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.1) \\ 1,1,1,1,1 \end{gathered}$ |
| 3 | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 2.0(0.0) \\ 2,2,2,2,2 \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.1) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.00 \\ 1,1,1,1,1 \\ \hline \end{gathered}$ |
| $\delta=1.00$ |  |  |  |  |  |  |  |  |
| 0 | $\begin{gathered} 499.6(556.6) \\ 24,129,319,669,1583 \end{gathered}$ | $\begin{gathered} 499.4(586.5) \\ 22,125,308,652, \\ 1620 \end{gathered}$ | $\begin{gathered} 494.2(646.2) \\ 58,140,277,575,1660 \end{gathered}$ | $\begin{gathered} 499.6(568.6) \\ 23,125,315,663,1601 \end{gathered}$ | $\begin{gathered} 498.8(562.2) \\ 23,129,317,663,1590 \end{gathered}$ | $\begin{gathered} 505.3(716.7) \\ 48,123,258,567,1820 \end{gathered}$ | $\begin{gathered} 495.2(593.1) \\ 19,119,301,645,1626 \end{gathered}$ | $\begin{gathered} 501.3(590.1) \\ 21,122,311,660.1628 \end{gathered}$ |


| 0.25 | $\begin{gathered} 208.8(246.1) \\ 9,51,129,273,687 \end{gathered}$ | $\begin{gathered} \hline 222.98(276.7) \\ 10,53,133,288,740 \end{gathered}$ | $\begin{gathered} 131.3(154.7) \\ 28,55,90,152,364 \end{gathered}$ | $199.0(243.0)$ $9,48,119,258,656$ | $\begin{gathered} 208.6(252.0) \\ 10,51,127,271,683 \end{gathered}$ | $\begin{gathered} 126.1(163.0) \\ 23,49,82,144,359 \end{gathered}$ | $\begin{gathered} 210.0(272.8) \\ 7,46,121,268,711 \end{gathered}$ | $\begin{gathered} 221.9(275.5) \\ 8,52,132,289,739 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.5 | $\begin{gathered} 53.4(61.4) \\ 3,14,34,70,172 \\ \hline \end{gathered}$ | $\begin{gathered} 58.5(69.4) \\ 3,15,36,76,188 \\ \hline \end{gathered}$ | $\begin{gathered} 32.3(18.4) \\ 12 \quad 20 \quad 28 \quad 40 \quad 66 \\ \hline \end{gathered}$ | $\begin{gathered} 45.0(53.6) \\ 3,12,28,59,144 \\ \hline \end{gathered}$ | $\begin{gathered} 52.2(60.3) \\ 3,14,33,69,167 \\ \hline \end{gathered}$ | $\begin{gathered} 29.5(17.9) \\ 9,18,26,37,62 \end{gathered}$ | $\begin{gathered} 46.6(59.5) \\ 2,11,28,60,154 \end{gathered}$ | $\begin{gathered} 55.8(67.1) \\ 2,13,34,73,182 \end{gathered}$ |
| 0.75 | $\begin{gathered} 17.1(18.5) \\ 1,5,11,23,53 \end{gathered}$ | $\begin{gathered} 18.3(20.1) \\ 1,5,12,24,57 \end{gathered}$ | $\begin{gathered} 14.3(6.2) \\ 6,10,13,18,26 \end{gathered}$ | $\begin{gathered} 12.6(13.3) \\ 1,4,8,16,37 \end{gathered}$ | $\begin{gathered} 16.1(17.3) \\ 1,5,11,21,50 \end{gathered}$ | $\begin{gathered} 12.9(6.3) \\ 4,9,12,16,24 \end{gathered}$ | $\begin{gathered} 12.2(13.2) \\ 1,3,8,16,37 \end{gathered}$ | $\begin{gathered} 16.2(18.3) \\ 1,4,10,22,51 \end{gathered}$ |
| 1.0 | $\begin{gathered} 6.8(6.7) \\ 1,2,5,9,20 \end{gathered}$ | $\begin{gathered} 7.1(7.2) \\ 1,2,5,9,21 \end{gathered}$ | $\begin{gathered} 8.1(3.1) \\ 4,6,8,10,14 \end{gathered}$ | $\begin{gathered} 4.9(4.2) \\ 1,2,4,6,13 \end{gathered}$ | $\begin{gathered} 6.2(6.0) \\ 1,2,4,8,18 \end{gathered}$ | $\begin{gathered} 7.3(3.3) \\ 2,5,7,9,13 \end{gathered}$ | $\begin{gathered} 4.7(4.1) \\ 1,2,3,6,13 \end{gathered}$ | $\begin{gathered} 6.0(6.1) \\ 1,2,4,8,18 \end{gathered}$ |
| 1.5 | $\begin{gathered} 2.0(1.5) \\ 1,1,2,3,5 \end{gathered}$ | $\begin{gathered} 2.05(1.5) \\ 1,1,2,3,5 \end{gathered}$ | $\begin{gathered} 3.9(1.2) \\ 2,3,4,5,6 \end{gathered}$ | $\begin{gathered} 1.8(1.0) \\ 1,1,2,2,4 \end{gathered}$ | $\begin{gathered} 1.9(1.3) \\ 1,1,2,2,4 \end{gathered}$ | $\begin{gathered} 3.5(1.4) \\ 2,2,3,4,6 \end{gathered}$ | $\begin{gathered} 1.8(1.0) \\ 1,1,2,2,4 \end{gathered}$ | $\begin{gathered} 1.9(1.2) \\ 1,1,2,2,4 \end{gathered}$ |
| 2 | $\begin{gathered} 1.2(0.5) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.2(0.5) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 2.6(0.6) \\ 2,2,3,3,4 \end{gathered}$ | $\begin{gathered} 1.2(0.4) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.2(0.5) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 2.4(0.7) \\ 1,2,2,3,4 \end{gathered}$ | $\begin{gathered} 1.2(0.4) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.2(0.4) \\ 1,1,1,1,2 \end{gathered}$ |
| 3 | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.04) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 2.0(0.09) \\ 2,2,2,2,2 \end{gathered}$ | $\begin{gathered} 1.0(0.05) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.05) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.5(0.5) \\ 1,1,1,2,2 \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ |
| $\delta=1.25$ |  |  |  |  |  |  |  |  |
| 0 | $\begin{gathered} 101.8(108.1) \\ 5,28,68,137,312 \end{gathered}$ | $\begin{gathered} 77.2(83.4) \\ 4,21,50,104,240 \end{gathered}$ | $\begin{gathered} 55.8(35.6) \\ 18,32,47,69,122 \end{gathered}$ | $\begin{gathered} 87.9(94.99) \\ 5,24,58,118,274 \end{gathered}$ | $\begin{gathered} 99.8(106.2) \\ 5,27,66,135,310 \end{gathered}$ | $\begin{gathered} 40.2(25.8) \\ 12,23,34,50,87 \end{gathered}$ | $\begin{gathered} 60.5(67.7) \\ 2,13,39,81,193 \end{gathered}$ | $\begin{gathered} 73.1(80.5) \\ 3,19,47,98,230 \end{gathered}$ |
| 0.25 | $\begin{gathered} 64.6(69.6) \\ 3,18,43,87,201 \end{gathered}$ | $\begin{gathered} 53.4(58.5) \\ 3,15,35,71,166 \end{gathered}$ | $\begin{gathered} 40.4(23.3) \\ 14,25,35,50,85 \end{gathered}$ | $\begin{gathered} 53.8(59.2) \\ 3,15,35,71,170 \end{gathered}$ | $\begin{gathered} 62.7(67.5) \\ 4,17,41,84,195 \end{gathered}$ | $\begin{gathered} 30.6(18.1) \\ 9,18,27,39,64 \end{gathered}$ | $\begin{gathered} 41.2(46.7) \\ 2,10,26,55,132 \end{gathered}$ | $\begin{gathered} 50.1(55.8) \\ 2,13,32,67,157 \end{gathered}$ |
| 0.5 | $\begin{gathered} 27.4(29.3) \\ 2,8,18,37,85 \end{gathered}$ | $\begin{gathered} 24.7(26.3) \\ 2,7,16,33,76 \end{gathered}$ | $\begin{gathered} 22.2(10.9) \\ 9,14,20,28,43 \end{gathered}$ | $\begin{gathered} 22.0(23.1) \\ 2,7,15,29,67 \end{gathered}$ | $\begin{gathered} 26.4(28.0) \\ 2,7,17,35,81 \end{gathered}$ | $\begin{gathered} 18.0(9.6) \\ 6,11,16,23,36 \end{gathered}$ | $\begin{gathered} 18.0(19.7) \\ 2,5,12,24,56 \end{gathered}$ | $\begin{gathered} 22.8(25.1) \\ 2,6,15,31,72 \end{gathered}$ |
| 0.75 | $\begin{gathered} 12.4(12.6) \\ 1,4,8,17,37 \end{gathered}$ | $\begin{gathered} 11.5(11.6) \\ 1,4,8,16,34 \end{gathered}$ | $\begin{gathered} 12.8(5.6) \\ 5,9,12,16,23 \end{gathered}$ | $\begin{gathered} 9.4(9.0) \\ 1,3,7,13,27 \end{gathered}$ | $\begin{gathered} 11.7(11.8) \\ 1,4,8,16,35 \end{gathered}$ | $\begin{gathered} 10.8(5.3) \\ 3,7,10,14,21 \end{gathered}$ | $\begin{gathered} 8.1(8.0) \\ 1,2,6,11,24 \end{gathered}$ | $\begin{gathered} 10.2(10.6) \\ 1,3,7,14,31 \end{gathered}$ |
| 1.0 | $\begin{gathered} 6.2(5.9) \\ 1,2,4,8,18 \\ \hline \end{gathered}$ | $\begin{gathered} 5.98(5.7) \\ 1,2,4,8,17 \\ \hline \end{gathered}$ | $\begin{gathered} 8.2(3.3) \\ 4,6,8,10,14 \end{gathered}$ | $\begin{gathered} 4.9(4.1) \\ 1,2,4,6,13 \\ \hline \end{gathered}$ | $\begin{gathered} 5.9(5.5) \\ 1,2,4,8,17 \\ \hline \end{gathered}$ | $\begin{gathered} 7.0(3.3) \\ 2,5,7,9,13 \end{gathered}$ | $\begin{gathered} 4.3(3.6) \\ 1,2,3,6,11 \end{gathered}$ | $\begin{gathered} 5.2(4.9) \\ 1,2,4,7,15 \end{gathered}$ |
| 1.5 | $\begin{gathered} 2.4(1.8) \\ 1,1,2,3,6 \end{gathered}$ | $\begin{gathered} 2.3(1.8) \\ 1,1,2,3,6 \end{gathered}$ | $\begin{gathered} 4.4(1.5) \\ 2,3,4,5,7 \end{gathered}$ | $\begin{gathered} 2.1(1.3) \\ 1,1,2,3,5 \end{gathered}$ | $\begin{gathered} 2.3(1.7) \\ 1,1,2,3,6 \end{gathered}$ | $\begin{gathered} 3.8(1.6) \\ 2,2,4,5,7 \end{gathered}$ | $\begin{gathered} 2.0(1.2) \\ 1,1,2,2,4 \end{gathered}$ | $\begin{gathered} 2.1(1.5) \\ 1,1,2,3,5 \end{gathered}$ |
| 2 | $\begin{gathered} 1.4(0.7) \\ 1,1,1,2,3 \end{gathered}$ | $\begin{gathered} 1.3(0.7) \\ 1,1,1,2,3 \end{gathered}$ | $\begin{gathered} 2.9(0.8) \\ 2,2,3,3,4 \\ \hline \end{gathered}$ | $\begin{gathered} 1.4(0.6) \\ 1,1,1,2,3 \end{gathered}$ | $\begin{gathered} 1.4(0.7) \\ 1,1,1,2,3 \end{gathered}$ | $\begin{gathered} 2.6(0.9) \\ 1,2,2,3,4 \\ \hline \end{gathered}$ | $\begin{gathered} 1.3(0.6) \\ 1,1,1,2,2 \end{gathered}$ | $\begin{gathered} 1.3(0.6) \\ 1,1,1,2,2 \\ \hline \end{gathered}$ |
| 3 | $\begin{gathered} 1.0(0.2) \\ 1, \quad 1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.1) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 2.1(0.2) \\ 2,2,2,2,3 \end{gathered}$ | $\begin{gathered} 1.0(0.1) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.1) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.6(0.5) \\ 1,1,2,2,2 \end{gathered}$ | $\begin{gathered} 1.0(0.1) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.1) \\ 1,1,1,1,1 \end{gathered}$ |
| $\delta=1.50$ |  |  |  |  |  |  |  |  |
| 0 | $\begin{gathered} 38.3(39.3) \\ 2,11,26,52,117 \end{gathered}$ | $\begin{gathered} 25.2(25.7) \\ 2,7,17,34,36 \end{gathered}$ | $\begin{gathered} 24.0(11.2) \\ 10,16,22,30,45 \end{gathered}$ | $\begin{gathered} 28.3(28.7) \\ 2,9,19,38,84 \end{gathered}$ | $\begin{gathered} \hline 36.1(37.1) \\ 2,10,25,49,109 \end{gathered}$ | $\begin{gathered} 17.1(8.5) \\ 6,11,16,22,33 \end{gathered}$ | $\begin{gathered} 17.1(17.7) \\ 2,5,11,23,52 \end{gathered}$ | $\begin{gathered} \hline 22.6(24.1) \\ 2,6,15,31,69 \end{gathered}$ |
| 0.25 | $\begin{gathered} 29.1(30.3) \\ 2,8,19,39,88 \\ \hline \end{gathered}$ | $\begin{gathered} 20.9(21.5) \\ 1,6,14,28,63 \\ \hline \end{gathered}$ | $\begin{gathered} 21.2(9.8) \\ 9,14,19,26,40 \end{gathered}$ | $\begin{gathered} 22.0(22.2) \\ 2,7,15,30,66 \end{gathered}$ | $\begin{gathered} 27.8(28.7) \\ 2,8,19,38,84 \\ \hline \end{gathered}$ | $\begin{gathered} 15.3(7.6) \\ 5,10,14,19,29 \end{gathered}$ | $\begin{gathered} 14.3(14.7) \\ 2,4,10,19,43 \\ \hline \end{gathered}$ | $\begin{gathered} 18.7(19.7) \\ 2,5,12,25,57 \end{gathered}$ |
| 0.5 | $\begin{gathered} 17.1(17.3) \\ 1,5,12,23,51 \end{gathered}$ | $\begin{gathered} 13.5(13.7) \\ 1,4,9,18,41 \end{gathered}$ | $\begin{gathered} 15.7(6.98) \\ 7,11,15,19,29 \end{gathered}$ | $\begin{gathered} 12.9(12.6) \\ 1,4,9,17,38 \end{gathered}$ | $\begin{gathered} 16.1(16.3) \\ 1,5,11,22,48 \end{gathered}$ | $\begin{gathered} 11.9(5.8) \\ 4,8,11,15,23 \end{gathered}$ | $\begin{gathered} 9.3(9.2) \\ 1,3,6,13,27 \end{gathered}$ | $\begin{gathered} 12.1(12.4) \\ 1,3,8,16,36 \end{gathered}$ |
| 0.75 | $\begin{gathered} 9.6(9.4) \\ 1,3,7,13,28 \end{gathered}$ | $\begin{gathered} 8.3(8.1) \\ 1,3,6,11,24 \end{gathered}$ | $\begin{gathered} 11.1(4.7) \\ 5,8,10,14,20 \end{gathered}$ | $\begin{gathered} 7.4(6.7) \\ 1,3,5,10,21 \end{gathered}$ | $\begin{gathered} 9.1(8.8) \\ 1,3,6,12,26 \end{gathered}$ | $\begin{gathered} 8.8(4.2) \\ 3,6,8,11,16 \end{gathered}$ | $\begin{gathered} 5.8(5.2) \\ 1,2,4,8,16 \end{gathered}$ | $\begin{gathered} 7.2(7.3) \\ 1,2,5,10,21 \end{gathered}$ |
| 1.0 | $\begin{gathered} 5.7(5.3) \\ 1,2,4,8,16 \end{gathered}$ | $\begin{gathered} 5.1(4.7) \\ 1,2,4,7,14 \end{gathered}$ | $\begin{gathered} 8.0(3.2) \\ 4,6,8,10,14 \end{gathered}$ | $\begin{gathered} 4.6(3.7) \\ 1,2,4,6,12 \end{gathered}$ | $\begin{gathered} 5.5(4.97) \\ 1,2,4,7,15 \end{gathered}$ | $\begin{gathered} 6.5(3.1) \\ 2,4,6,8,12 \end{gathered}$ | $\begin{gathered} 3.8(3.2) \\ 1,2,3,5,10 \end{gathered}$ | $\begin{gathered} 4.5(4.1) \\ 1,2,3,6,13 \end{gathered}$ |
| 1.5 | $\begin{gathered} 2.6(2.1) \\ 1,1,2,3,7 \end{gathered}$ | $\begin{gathered} 2.4(1.9) \\ 1,1,2,3,6 \end{gathered}$ | $\begin{gathered} 4.7(1.7) \\ 2,3,4,6,8 \end{gathered}$ | $\begin{gathered} 2.3(1.5) \\ 1,1,2,3,5 \end{gathered}$ | $\begin{gathered} 2.5(1.9) \\ 1,1,2,3,6 \end{gathered}$ | $\begin{gathered} 4.0(1.7) \\ 2,3,4,5,7 \end{gathered}$ | $\begin{gathered} 2.1(1.3) \\ 1,1,2,2,5 \end{gathered}$ | $\begin{gathered} 2.2(1.6) \\ 1,1,2,3,6 \end{gathered}$ |
| 2 | $\begin{gathered} 1.6(1.0) \\ 1,1,1,2,3 \end{gathered}$ | $\begin{gathered} 1.5(0.9) \\ 1,1,1,2,3 \end{gathered}$ | $\begin{gathered} 3.2(1.0) \\ 2,3,3,4,5, \end{gathered}$ | $\begin{gathered} 1.5(0.8) \\ 1,1,1,2,3 \end{gathered}$ | $\begin{gathered} 1.5(0.9) \\ 1,1,1,2,3 \end{gathered}$ | $\begin{gathered} 2.8(1.1) \\ 1,2,3,3,5 \end{gathered}$ | $\begin{gathered} 1.4(0.7) \\ 1,1,1,2,3 \end{gathered}$ | $\begin{gathered} 1.5(0.8) \\ 1,1,1,2,3 \end{gathered}$ |
| 3 | $\begin{gathered} 1.1(0.3) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.0(0.2) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 2.2(0.4) \\ 2,2,2,2,3 \end{gathered}$ | $\begin{gathered} 1.1(0.2) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.1(0.2) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.8(0.6) \\ 1,1,2,2,3 \end{gathered}$ | $\begin{gathered} 1.0(0.2) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{array}{r} 1.0(0.2) \\ 1,1,1,1,1 \\ \hline \end{array}$ |
| $\delta=1.75$ |  |  |  |  |  |  |  |  |
| 0 | $\begin{gathered} 19.3(19.3) \\ 1,6,13,26,58 \end{gathered}$ | $\begin{gathered} 12.2(12.0) \\ 1,4,8,16,36 \end{gathered}$ | $\begin{gathered} 15.3(6.3) \\ 7,11,14,19,27 \end{gathered}$ | $\begin{gathered} 13.2(12.5) \\ 2,5,9,18,38 \end{gathered}$ | $\begin{gathered} 18.1(18.1) \\ 1,6,12,24,54 \end{gathered}$ | $\begin{gathered} 10.6(5.0) \\ 4,7,10,13,20 \end{gathered}$ | $\begin{gathered} 7.9(7.5) \\ 1,2,6,11,23 \end{gathered}$ | $\begin{gathered} 10.6(10.7) \\ 1,3,7,14,32 \end{gathered}$ |


| 0.25 | $\begin{gathered} 16.7(16.7) \\ 1,5,11,23,50 \end{gathered}$ | $\begin{gathered} 11.0(10.9) \\ 1,3,8,15,33 \end{gathered}$ | $\begin{gathered} 14.3(5.9) \\ 6,10,13,18,25 \end{gathered}$ | $\begin{gathered} 11.7(11.2) \\ 1,4,8,16,33 \end{gathered}$ | $\begin{gathered} 15.4(15.4) \\ 1,5,11,21,46 \end{gathered}$ | $\begin{gathered} 10.1(4.7) \\ 3,7,10,13,19 \\ \hline \end{gathered}$ | $\begin{gathered} 7.3(6.8) \\ 1,2,5,10,21 \end{gathered}$ | $\begin{gathered} 9.5(9.5) \\ 1,3,6,13,29 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.5 | $\begin{gathered} 11.7(11.5) \\ 1,4,8,16,35 \\ \hline \end{gathered}$ | $\begin{gathered} 8.5(8.3) \\ 1,3,6,12,25 \\ \hline \end{gathered}$ | $\begin{gathered} 11.98(4.9) \\ 5,8,11,15,21 \\ \hline \end{gathered}$ | $\begin{gathered} 8.6(7.8) \\ 1,3,6,11,24 \\ \hline \end{gathered}$ | $\begin{gathered} 10.98(10.7) \\ 1,4,8,15,32 \\ \hline \end{gathered}$ | $\begin{gathered} 8.8(4.1) \\ 3,6,8,11,16 \\ \hline \end{gathered}$ | $\begin{gathered} 5.8(5.2) \\ 1,2,4,8,16 \\ \hline \end{gathered}$ | $\begin{gathered} 7.4(7.3) \\ 1,2,5,10,22 \\ \hline \end{gathered}$ |
| 0.75 | $\begin{gathered} 7.8(7.5) \\ 1,3,6,11,23 \end{gathered}$ | $\begin{gathered} 6.1(5.8) \\ 1,2,4,8,18 \end{gathered}$ | $\begin{gathered} 9.5(3.9) \\ 4,7,9,12,17 \end{gathered}$ | $\begin{gathered} 5.98(5.1) \\ 1,2,4,8,16 \end{gathered}$ | $\begin{gathered} 7.3(6.96) \\ 1,2,5,10,21 \end{gathered}$ | $\begin{gathered} 7.2(3.4) \\ 2,5,7,9,13 \end{gathered}$ | $\begin{gathered} 4.4(3.7) \\ 1,2,3,6,12 \end{gathered}$ | $\begin{gathered} 5.4(5.1) \\ 1,2,4,7,15 \end{gathered}$ |
| 1.0 | $\begin{gathered} 5.3(4.8) \\ 1,2,4,7,15 \end{gathered}$ | $\begin{gathered} 4.4(4.0) \\ 1,2,3,6,12 \end{gathered}$ | $\begin{gathered} 7.5(2.96) \\ 3,5,7,9,13 \end{gathered}$ | $\begin{gathered} 4.2(3.4) \\ 1,2,3,6,11 \end{gathered}$ | $\begin{gathered} 5.0(4.5) \\ 1,2,4,7,14 \end{gathered}$ | $\begin{gathered} 5.9(2.7) \\ 2,4,6,8,11 \end{gathered}$ | $\begin{gathered} 3.4(2.6) \\ 1,2,2,4,9 \end{gathered}$ | $\begin{gathered} 3.9(3.4) \\ 1,2,3,5,11 \end{gathered}$ |
| 1.5 | $\begin{gathered} 2.7(2.2) \\ 1,1,2,4,7 \end{gathered}$ | $\begin{gathered} 2.5(1.9) \\ 1,1,2,3,6 \end{gathered}$ | $\begin{gathered} 4.9(1.8) \\ 2,4,5,6,8 \end{gathered}$ | $\begin{gathered} 2.4(1.6) \\ 1,1,2,3,5 \end{gathered}$ | $\begin{gathered} 2.6(2.0) \\ 1,1,2,3,7 \end{gathered}$ | $\begin{array}{r} 4.0(1.8) \\ 2,2,4,5,7 \end{array}$ | $\begin{gathered} 2.1(1.4) \\ 1,1,2,3,5 \end{gathered}$ | $\begin{gathered} 2.3(1.6) \\ 1,1,2,3,6 \end{gathered}$ |
| 2 | $\begin{gathered} 1.7(1.1) \\ 1,1,1,2,4 \end{gathered}$ | $\begin{gathered} 1.6(1.0) \\ 1,1,1,2,4 \\ \hline \end{gathered}$ | $\begin{gathered} 3.5(1.2) \\ 2,3,3,4,6 \\ \hline \end{gathered}$ | $\begin{gathered} 1.6(0.9) \\ 1,1,1,2,3 \end{gathered}$ | $\begin{gathered} 1.7(1.0) \\ 1,1,1,2,4 \\ \hline \end{gathered}$ | $\begin{gathered} 2.9(1.2) \\ 1,1,2,2,3 \\ \hline \end{gathered}$ | $\begin{gathered} 1.5(0.8) \\ 1,1,1,2,3 \\ \hline \end{gathered}$ | $\begin{gathered} 1.6(0.9) \\ 1,1,1,2,3 \end{gathered}$ |
| 3 | $\begin{gathered} 1.1(0.4) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.1(0.3) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 2.3(0.5) \\ 2,2,2,3,3 \end{gathered}$ | $\begin{gathered} 1.1(0.3) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.1(0.4) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.9(0.7) \\ 1,1,2,2,3 \end{gathered}$ | $\begin{gathered} 1.1(0.3) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.1(0.3) \\ 1,1,1,1,2 \end{gathered}$ |
| $\delta=2.00$ |  |  |  |  |  |  |  |  |
| 0 | $\begin{gathered} 12.0(11.7) \\ 1,4,8,16,35 \end{gathered}$ | $\begin{gathered} 7.4(7.0) \\ 1,2,5,10,21 \end{gathered}$ | $\begin{gathered} 11.3(4.3) \\ 5,8,11,14,19 \end{gathered}$ | $\begin{gathered} 8.1(7.2) \\ 1,3,6,11,22 \end{gathered}$ | $\begin{gathered} 10.9(10.5) \\ 1,3,8,15,32 \end{gathered}$ | $\begin{gathered} 7.8(3.5) \\ 3,5,7,10,14 \end{gathered}$ | $\begin{gathered} 5.0(4.2) \\ 1,2,4,7,13 \end{gathered}$ | $\begin{gathered} 6.3(6.0) \\ 1,2,4,8,18 \end{gathered}$ |
| 0.25 | $\begin{gathered} 10.9(10.6) \\ 1,3,8,15,32 \end{gathered}$ | $\begin{gathered} 6.98(6.6) \\ 1,2,5,9,20 \\ \hline \end{gathered}$ | $\begin{gathered} 10.9(4.2) \\ 5,8,10,13,19 \end{gathered}$ | $\begin{gathered} 7.5(6.5) \\ 1,3,6,10,20 \end{gathered}$ | $\begin{gathered} 9.99(9.6) \\ 1,3,7,14,29 \end{gathered}$ | $\begin{gathered} 7.6(3.4) \\ 2,5,7,10,14 \\ \hline \end{gathered}$ | $\begin{gathered} 4.8(4.0) \\ 1,2,4,6,13 \\ \hline \end{gathered}$ | $\begin{gathered} 6.0(5.7) \\ 1,2,4,8,17 \end{gathered}$ |
| 0.5 | $\begin{gathered} 8.7(8.3) \\ 1,3,6,12,25 \end{gathered}$ | $\begin{gathered} 5.96(5.6) \\ 1,2,4,8,17 \end{gathered}$ | $\begin{gathered} 9.7(3.8) \\ 5,7,9,12,17 \end{gathered}$ | $\begin{gathered} 6.2(5.3) \\ 1,3,5,8,17 \end{gathered}$ | $\begin{gathered} 8.1(7.6) \\ 1,3,6,11,23 \end{gathered}$ | $\begin{gathered} 7.0(3.2) \\ 2,5,7,9,13 \end{gathered}$ | $\begin{gathered} 4.2(3.4) \\ 1,2,3,6,11 \end{gathered}$ | $\begin{gathered} 5.2(4.8) \\ 1,2,4,7,15 \end{gathered}$ |
| 0.75 | $\begin{gathered} 6.5(6.1) \\ 1,2,5,9,19 \end{gathered}$ | $\begin{gathered} 4.8(4.3) \\ 1,2,3,6,13 \\ \hline \end{gathered}$ | $\begin{gathered} 8.3(3.2) \\ 4,6,8,10,14 \end{gathered}$ | $\begin{gathered} 4.9(4.0) \\ 1,2,4,6,13 \\ \hline \end{gathered}$ | $\begin{gathered} 6.0(5.6) \\ 1,2,4,8,17 \\ \hline \end{gathered}$ | $\begin{gathered} 6.2(2.8) \\ 2,4,6,8,11 \\ \hline \end{gathered}$ | $\begin{gathered} 3.5(2.8) \\ 1,2,3,5,9 \end{gathered}$ | $\begin{gathered} 4.2(3.7) \\ 1,2,3,6,12 \\ \hline \end{gathered}$ |
| 1.0 | $\begin{gathered} 4.8(4.3) \\ 1,2,3,6,13 \\ \hline \end{gathered}$ | $\begin{gathered} 3.8(3.3) \\ 1,1,3,5,10 \end{gathered}$ | $\begin{gathered} 7.0(2.7) \\ 3,5,7,9,12 \end{gathered}$ | $\begin{gathered} 3.8(2.9) \\ 1,2,3,5,10 \end{gathered}$ | $\begin{gathered} 4.5(3.98) \\ 1,2,3,6,13 \\ \hline \end{gathered}$ | $\begin{gathered} 5.4(2.4) \\ 2,4,5,7,10 \\ \hline \end{gathered}$ | $\begin{gathered} 3.0(2.2) \\ 1,1,2,4,7 \end{gathered}$ | $\begin{gathered} 3.4(2.8) \\ 1,1,2,4,9 \end{gathered}$ |
| 1.5 | $\begin{gathered} 2.8(2.3) \\ 1,1,2,4,7 \\ \hline \end{gathered}$ | $\begin{gathered} 2.4(1.9) \\ 1,1,2,3,6 \end{gathered}$ | $\begin{array}{r} 4.96(1.8) \\ 2,4,5,6,8 \\ \hline \end{array}$ | $\begin{gathered} 2.4(1.6) \\ 1,1,2,3,6 \end{gathered}$ | $\begin{gathered} 2.7(2.1) \\ 1,1,2,3,7 \end{gathered}$ | $\begin{gathered} 4.0(1.8) \\ 2,2,4,5,7 \\ \hline \end{gathered}$ | $\begin{gathered} 2.1(1.3) \\ 1,1,2,2,5 \\ \hline \end{gathered}$ | $\begin{gathered} 2.2(1.6) \\ 1,1,2,3,5 \\ \hline \end{gathered}$ |
| 2 | $\begin{gathered} 1.9(1.3) \\ 1,1,1,2,4 \end{gathered}$ | $\begin{gathered} 1.7(1.1) \\ 1,1,1,2,4 \end{gathered}$ | $\begin{array}{r} 3.7(1.2) \\ 2,3,4,4,6 \\ \hline \end{array}$ | $\begin{gathered} 1.7(1.0) \\ 1,1,1,2,4 \end{gathered}$ | $\begin{gathered} 1.8(1.2) \\ 1,1,1,2,4 \\ \hline \end{gathered}$ | $\begin{array}{r} 3.0(1.3) \\ 2,2,3,4,5 \\ \hline \end{array}$ | $\begin{gathered} 1.6(0.9) \\ 1,1,1,2,3 \\ \hline \end{gathered}$ | $\begin{gathered} 1.6(1.0) \\ 1,1,1,2,4 \\ \hline \end{gathered}$ |
| 3 | $\begin{gathered} 1.2(0.5) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.1(0.4) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 2.5(0.6) \\ 2,2,2,3,4 \end{gathered}$ | $\begin{gathered} 1.2(0.4) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.2(0.5) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 2.0(0.7) \\ 1,2,2,2,3 \end{gathered}$ | $\begin{gathered} 1.2(0.4) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.1(0.4) \\ 1,1,1,1,2 \end{gathered}$ |

** indicates variance estimate is not meaningful and \# indicates the percentile value exceeds 5000 .

Table-5. Performance comparisons for $m=100, n=5$ between various competetive charts for the Laplace $(\theta, \delta)$ distribution with $\mathrm{ARL}_{0}=500$.

| $\theta$ | Shewhart Lepage Chart | Shewhart Cucconi Chart | CUSUM Lepage chart |  |  | CUSUM Cucconi chart |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $k=0$ | $k=3$ | $k=6$ | $k=0$ | $k=1.5$ | $k=3.0$ |
| $\delta=0.50$ |  |  |  |  |  |  |  |  |
| 0 | $\begin{gathered} >23000^{(* *)} \\ 77,533,1793, \#, \# \end{gathered}$ | $\begin{gathered} >2500(* *) \\ 77,545,1821, \#, \# \end{gathered}$ | $\begin{gathered} 92.0(365.0) \\ 13,23,35,61,206 \end{gathered}$ | $\begin{gathered} >1400(* *) \\ 22,160,589,2111, \# \end{gathered}$ | $\begin{gathered} >2300(* *) \\ 69,501,1669, \#, \# \end{gathered}$ | $\begin{gathered} 124.2(419.6) \\ 20,32,49,82,304 \end{gathered}$ | $\begin{gathered} >4800(* *) \\ 4385, \#, \#, \#, \# \end{gathered}$ | $\begin{aligned} & >4400(* *) \\ & \#, \#, \#, \#, \# \end{aligned}$ |
| 0.25 | $\begin{gathered} >3000(* *) \\ 133,1000,3343, \#, \# \end{gathered}$ | $\begin{gathered} >3100(* *) \\ 133,1074,3347, \text { \#, \# } \end{gathered}$ | $\begin{gathered} 86.1(273.8) \\ 17,29,44,71,202 \\ \hline \end{gathered}$ | $\begin{gathered} >2300(* *) \\ 51,461,1748, \text { \#, \# } \end{gathered}$ | $\begin{gathered} >2900(* *) \\ 125,953,3213, \#, \# \end{gathered}$ | $\begin{gathered} 61.3(131.1) \\ 20,30,42,62,138 \\ \hline \end{gathered}$ | $\begin{gathered} >4400(* *) \\ 813, \#, \#, \#, \# \end{gathered}$ | $>4800\left({ }^{* *}\right)$ <br> \#, \#, \#, \#, \# |
| 0.5 | $\begin{gathered} >2100(* *) \\ 33,313,1385, \#, \# \end{gathered}$ | $\begin{gathered} >2300(* *) \\ 33,333,1451, \#, \# \end{gathered}$ | $\begin{gathered} 39.2(3118) \\ 14,24,33,47,82 \end{gathered}$ | $\begin{gathered} >1900(* *) \\ 20,211,1039,4352, \# \end{gathered}$ | $\begin{gathered} >2200(* *) \\ 31,310,1382, \#, \# \end{gathered}$ | $\begin{gathered} 29.8(15.2) \\ 13,21,27,35,55 \end{gathered}$ | $\begin{gathered} >3000(* *) \\ 41,625,3966, \#, \# \end{gathered}$ | $>4300(* *)$ <br> 489, \#, \#, \#, \# |
| 0.75 | $\begin{gathered} >800(* *) \\ 4,35,153,716, \# \end{gathered}$ | $\begin{gathered} >800(* *) \\ 4,55,187,818, \# \end{gathered}$ | $\begin{gathered} 18.3(10.3) \\ 6,11,16,23,38 \end{gathered}$ | $\begin{gathered} >600(* *) \\ 3,14,63,385, \end{gathered}$ | $\begin{gathered} >700(* *) \\ 4,31,143,695, \# \end{gathered}$ | $\begin{gathered} 15.9(7.1) \\ 6,11,15,20,29 \end{gathered}$ | $\begin{gathered} >1100(* *) \\ 3,26168,1338, \# \end{gathered}$ | $\begin{gathered} >2900(* *) \\ 26,501,3786, \#, \# \end{gathered}$ |
| 1.0 | $\begin{gathered} 173.9(597.4) \\ 1,5,19,78,749 \\ \hline \end{gathered}$ | $\begin{gathered} 177.8(617.0) \\ 1,6,22,81,752 \\ \hline \end{gathered}$ | $\begin{array}{r} 9.1(4.8) \\ 4,6,8,11,18 \\ \hline \end{array}$ | $\begin{gathered} 86.8(446.6) \\ 1,3,7,19,254 \\ \hline \end{gathered}$ | $\begin{gathered} 167.0(599.0) \\ 1,5,16,67,707 \\ \hline \end{gathered}$ | $\begin{gathered} 9.0(4.2) \\ 4,6,8,11,17 \\ \hline \end{gathered}$ | $\begin{gathered} 195.5(752.9) \\ 2,4,10,39,869 \\ \hline \end{gathered}$ | $\begin{gathered} >1200(* *) \\ 2,25,194,1801, \# \\ \hline \end{gathered}$ |


| 1.5 | $\begin{gathered} 5.8(50.6) \\ 1,1,2,4,15 \end{gathered}$ | $\begin{gathered} 5.9(50.9) \\ 1,1,3,4,17 \end{gathered}$ | $\begin{gathered} 3.9(1.4) \\ 2,3,4,4,6 \\ \hline \end{gathered}$ | $\begin{gathered} 2.1(3.7) \\ 1,1,2,2,5 \end{gathered}$ | $\begin{gathered} 4.6(42.5) \\ 1,1,2,3,10 \end{gathered}$ | $\begin{gathered} 3.9(1.6) \\ 2,3,4,5,7 \end{gathered}$ | $\begin{gathered} 3.1(39.6) \\ 1,1,2,3,6 \end{gathered}$ | $\begin{aligned} & 51.5(373.6) \\ & 1,2,3,7,79 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | $\begin{gathered} 1.3(1.7) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.4(1.8) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 2.5(0.6) \\ 2,2,2,3,4 \end{gathered}$ | $\begin{gathered} 1.2(0.4) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.2(0.7) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 2.5(0.7) \\ 2,2,2,3,4 \end{gathered}$ | $\begin{gathered} 1.3(0.6) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.9(9.1) \\ 1,1,1,2,4 \end{gathered}$ |
| 3 | $\begin{gathered} 1.0(0.1) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.1) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 2.0(0.1) \\ 2,2,2,2,2 \end{gathered}$ | $\begin{gathered} 1.0(0.1) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.1) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.6(0.5) \\ 1,1,2,2,2 \end{gathered}$ | $\begin{gathered} 1.0(0.1) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.1) \\ 1,1,1,1,1 \end{gathered}$ |
| $\delta=1.00$ |  |  |  |  |  |  |  |  |
| 0 | $509.6(676.4)$ $18,107,280,631,1794$ | $\begin{gathered} \hline 496.7(712.7) \\ 16,94,250,593,1811 \end{gathered}$ | $\begin{gathered} 502.2(862.8) \\ 34,89,195,483,2118 \end{gathered}$ | $\begin{gathered} 495.2(676.3) \\ 17,100,264,606,1777 \end{gathered}$ | 506.7 (677.8) $18,106,275,630,1772$ | $507.2(889.5)$ $27,76,181,487,2254$ | $501.9(740.4)$ $13,87,243,594,1886$ | $502.9(719.8)$ $15,93,253,601,1857$ |
| 0.25 | $\begin{gathered} 347.2(528.8) \\ 10,62,167,411,1271 \end{gathered}$ | $\begin{gathered} 377.9(602.8) \\ 10,63,173,429,1429 \end{gathered}$ | $\begin{gathered} 266.7(572.7) \\ 21,48,97,230,1008 \\ \hline \end{gathered}$ | $\begin{gathered} 333.3(535.9) \\ 9,54,151,381,1249 \end{gathered}$ | $\begin{gathered} 347.2(531.8) \\ 10,61,167,408,1282 \end{gathered}$ | $\begin{gathered} 249.0(542.9) \\ 17,42,87,213,969 \end{gathered}$ | $\begin{gathered} 374.4(618.6) \\ 7,55,161,416,1470 \end{gathered}$ | $\begin{gathered} 376.9(598.9) \\ 10,61,170,432,1438 \end{gathered}$ |
| 0.5 | $\begin{gathered} 146.0(273.3) \\ 4,23,63,157,548 \end{gathered}$ | $\begin{gathered} 179.0(344.7) \\ 4,25,73,189,674 \end{gathered}$ | $\begin{gathered} 60.2(138.9) \\ 10,20,33,59,171 \end{gathered}$ | $\begin{gathered} 128.99(268.2) \\ 4,18,49,130,495 \end{gathered}$ | $\begin{gathered} 144.9(278.7) \\ 4,22,60,152,545 \end{gathered}$ | $\begin{gathered} 54.2(121.9) \\ 8,18,31,54,157 \\ \hline \end{gathered}$ | $\begin{gathered} 161.4(339.0) \\ 2,19,58,160,641 \\ \hline \end{gathered}$ | $\begin{gathered} 182.4(361.8) \\ 3,24,72,188,708 \\ \hline \end{gathered}$ |
| 0.75 | $\begin{gathered} 51.5(109.5) \\ 2,8,22,54,187 \end{gathered}$ | $\begin{gathered} 70.3(158.9) \\ 2,10,28,70,265 \end{gathered}$ | $\begin{gathered} 19.5(18.4) \\ 6,10,15,23,46 \end{gathered}$ | $\begin{gathered} 39.0(96.7) \\ 2,6,15,37,142 \end{gathered}$ | $\begin{gathered} 49.3(103.8) \\ 2,8,21,51,179 \end{gathered}$ | $\begin{gathered} 18.4(17.5) \\ 5,9,14,22,44 \end{gathered}$ | $\begin{gathered} 52.1(140.3) \\ 2,6,17,47,196 \end{gathered}$ | $\begin{gathered} 67(155.1) \\ 2,9,25,67,254 \end{gathered}$ |
| 1.0 | $\begin{gathered} 18.7(36.5) \\ 1,4,9,20,66 \end{gathered}$ | $\begin{gathered} 25.8(57.7) \\ 1,4,11,26,94 \end{gathered}$ | $\begin{gathered} 10.1(5.99) \\ 4,6,9,12,21 \end{gathered}$ | $\begin{gathered} 12.1(24.1) \\ 1,3,6,13,41 \end{gathered}$ | $\begin{gathered} 17.5(35.4) \\ 1,3,8,19,62 \end{gathered}$ | $\begin{gathered} 9.8(6.1) \\ 3,6,8,12,21 \end{gathered}$ | $\begin{gathered} 15.4(42.0) \\ 1,3,6,14,52 \end{gathered}$ | $\begin{gathered} 23.5(51.2) \\ 1,3,9,24,86 \end{gathered}$ |
| 1.5 | $\begin{gathered} 3.9(5.2) \\ 1,1,2,5,12 \end{gathered}$ | $\begin{gathered} \hline 4.8(7.4) \\ 1,1,3,5,16 \\ \hline \end{gathered}$ | $\begin{gathered} 4.7(1.9) \\ 2,3,4,6,8 \end{gathered}$ | $\begin{gathered} 2.8(2.5) \\ 1,1,2,3,7 \end{gathered}$ | $\begin{gathered} 3.5(4.3) \\ 1,1,2,4,10 \end{gathered}$ | $\begin{gathered} 4.5(2.1) \\ 2,3,4,6,8 \end{gathered}$ | $\begin{gathered} 3.0(3.2) \\ 1,1,2,4,8 \end{gathered}$ | $\begin{gathered} 4.1(6.6) \\ 1,1,2,5,13 \end{gathered}$ |
| 2 | $\begin{gathered} 1.7(1.3) \\ 1,1,1,2,4 \end{gathered}$ | $\begin{gathered} 1.8(1.6) \\ 1,1,1,2,5 \end{gathered}$ | $\begin{gathered} 3.1(0.98) \\ 2,2,3,4,5 \end{gathered}$ | $\begin{gathered} 1.6(0.8) \\ 1,1,1,2,3 \end{gathered}$ | $\begin{gathered} 1.7(1.1) \\ 1,1,1,2,4 \end{gathered}$ | $\begin{array}{r} 2.9(1.1) \\ 2,2,3,4,5 \end{array}$ | $\begin{gathered} 1.6(0.9) \\ 1,1,1,2,3 \end{gathered}$ | $\begin{gathered} 1.7(1.3) \\ 1,1,1,2,4 \end{gathered}$ |
| 3 | $\begin{gathered} 1.1(0.3) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.1(0.3) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 2.1(0.3) \\ 2,2,2,2,3 \end{gathered}$ | $\begin{gathered} 1.1(0.3) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.1(0.3) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.8(0.6) \\ 1,1,2,2,3 \end{gathered}$ | $\begin{gathered} 1.1(0.3) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.1(0.3) \\ 1,1,1,1,2 \end{gathered}$ |
| $\delta=1.25$ |  |  |  |  |  |  |  |  |
| 0 | $\begin{gathered} 155.4(203.5) \\ 7,36,90,198,515 \end{gathered}$ | $\begin{gathered} 121.1(167.4) \\ 5,27,68,150,414 \end{gathered}$ | $\begin{gathered} 92.1(152.1) \\ 16,33,55,99,271 \end{gathered}$ | $\begin{gathered} 137.4(181.0) \\ 6,31,79,174,460 \end{gathered}$ | $\begin{gathered} 153.6(197.2) \\ 6,35,90,195,518 \end{gathered}$ | $\begin{gathered} 69.0(118.8) \\ 11,24,41,74,206 \end{gathered}$ | $\begin{gathered} 109.0(161.6) \\ 3,21,58,132,386 \end{gathered}$ | $\begin{gathered} 119.7(166.3) \\ 4,25,66,150,407 \end{gathered}$ |
| 0.25 | $\begin{gathered} 116.5(163.9) \\ 5,25,64,144,398 \\ \hline \end{gathered}$ | $\begin{gathered} 99.9(141.4) \\ 4,21,54,122,348 \\ \hline \end{gathered}$ | $\begin{gathered} 64.8(102.1) \\ 12,25,40,70,184 \end{gathered}$ | $\begin{gathered} 102.4(149.1) \\ 4,21,54,124,361 \\ \hline \end{gathered}$ | $\begin{gathered} 116.2(160.6) \\ 4,25,64,145,402 \\ \hline \end{gathered}$ | $\begin{gathered} 50.4(77.6) \\ 9,19,32,56,144 \\ \hline \end{gathered}$ | $\begin{gathered} 87.4(136.5) \\ 2,16,44,104,310 \\ \hline \end{gathered}$ | $\begin{gathered} 100.7(149.5) \\ 3,20,54,123,347 \\ \hline \end{gathered}$ |
| 0.5 | $\begin{gathered} 62.5(95.6) \\ 3,13,33,74,218 \end{gathered}$ | $\begin{gathered} 60.8(97.1) \\ 2,12,31,72,213 \end{gathered}$ | $\begin{gathered} 30.6(34.6) \\ 8,15,22,36,76 \end{gathered}$ | $\begin{gathered} 50.2(78.9) \\ 2,10,25,59,177 \end{gathered}$ | $\begin{gathered} 60.0(93.6) \\ 2,12,31,71,214 \end{gathered}$ | $\begin{gathered} 26.2(31.1) \\ 6,12,19,31,67 \end{gathered}$ | $\begin{gathered} 48.8(84.1) \\ 2,8,23,55,177 \end{gathered}$ | $\begin{gathered} 59.6(97.3) \\ 2,11,30,69,213 \end{gathered}$ |
| 0.75 | $\begin{gathered} 28.4(43.2) \\ 1,6,15,34,98 \\ \hline \end{gathered}$ | $\begin{gathered} 31.4(51.1) \\ 1,6,16,36,111 \\ \hline \end{gathered}$ | $\begin{gathered} 15.9(12.7) \\ 5,9,13,19,36 \\ \hline \end{gathered}$ | $\begin{gathered} 20.7(35.2) \\ 2,5,11,24,72 \\ \hline \end{gathered}$ | $\begin{gathered} 26.9(40.9) \\ 1,6,14,32,92 \\ \hline \end{gathered}$ | $\begin{gathered} 14.2(10.4) \\ 4,8,12,18,32 \\ \hline \end{gathered}$ | $\begin{gathered} 21.7(38.5) \\ 2,4,10,24,77 \\ \hline \end{gathered}$ | $\begin{gathered} 29.4(49.7) \\ 1,5,14,34,106 \\ \hline \end{gathered}$ |
| 1.0 | $\begin{gathered} 13.2(19.2) \\ 1,3,7,16,44 \end{gathered}$ | $\begin{gathered} 15.0(23.0) \\ 1,3,8,17,52 \end{gathered}$ | $\begin{gathered} 9.6(5.3) \\ 4,6,8,12,19 \end{gathered}$ | $\begin{gathered} 9.2(13.4) \\ 1,3,5,11,29 \end{gathered}$ | $\begin{gathered} 12.5(19.0) \\ 1,3,7,15,41 \end{gathered}$ | $\begin{gathered} 8.9(5.4) \\ 2,5,8,11,19 \end{gathered}$ | $\begin{gathered} 9.5(15.3) \\ 1,2,5,11,32 \end{gathered}$ | $\begin{gathered} 13.8(21.6) \\ 1,3,7,16,48 \end{gathered}$ |
| 1.5 | $\begin{gathered} 3.9(4.3) \\ 1,1,3,5,12 \\ \hline \end{gathered}$ | $\begin{gathered} 4.3(5.3) \\ 1,1,3,5,13 \\ \hline \end{gathered}$ | $\begin{gathered} 4.9(2.0) \\ 2,3,5,6,9 \end{gathered}$ | $\begin{gathered} \hline 2.9(2.5) \\ 1,1,2,4,7 \\ \hline \end{gathered}$ | $\begin{gathered} 3.7(4.1) \\ 1,1,2,5,11 \\ \hline \end{gathered}$ | $\begin{gathered} 4.8(2.2) \\ 2,3,4,6,9 \end{gathered}$ | $\begin{gathered} 3.0(2.7) \\ 1,1,2,4,8 \\ \hline \end{gathered}$ | $\begin{gathered} 3.8(4.6) \\ 1,1,2,4,11 \\ \hline \end{gathered}$ |
| 2 | $\begin{gathered} 1.9(1.5) \\ 1,1,1,2,5 \end{gathered}$ | $\begin{gathered} 2.0(1.7) \\ 1,1,1,2,5 \end{gathered}$ | $\begin{gathered} 3.3(1.1) \\ 2,2,3,4,5 \end{gathered}$ | $\begin{gathered} 1.7(1.0) \\ 1,1,1,2,4 \end{gathered}$ | $\begin{gathered} 1.9(1.4) \\ 1,1,1,2,4 \end{gathered}$ | $\begin{gathered} 3.0(1.2) \\ 2,2,3,4,5 \end{gathered}$ | $\begin{gathered} 1.7(1.0) \\ 1,1,1,2,4 \end{gathered}$ | $\begin{gathered} 1.8(1.4) \\ 1,1,1,2,4 \end{gathered}$ |
| 3 | $\begin{gathered} 1.1(0.4) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.1(0.4) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 2.2(0.5) \\ 2,2,2,2,3 \end{gathered}$ | $\begin{gathered} 1.1(0.4) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.1(0.4) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.9(0.7) \\ 1,2,2,2,3 \\ \hline \end{gathered}$ | $\begin{gathered} 1.1(0.4) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.1(0.4) \\ 1,1,1,1,2 \end{gathered}$ |
| $\delta=1.50$ |  |  |  |  |  |  |  |  |
| 0 | $\begin{gathered} 68.0(81.8) \\ 3,17,42,89,221 \end{gathered}$ | $\begin{gathered} \hline 47.4(59.7) \\ 2,12,29,61,156 \end{gathered}$ | $\begin{gathered} 34.1(28.5) \\ 10,18,27,41,80 \end{gathered}$ | $\begin{gathered} 54.8(68.4) \\ 3,13,32,70,181 \end{gathered}$ | $\begin{gathered} 65.8(79.4) \\ 3,16,40,85,214 \end{gathered}$ | $\begin{gathered} 24.8(21.0) \\ 6,13,20,31,60 \end{gathered}$ | $\begin{gathered} 37.3(50.2) \\ 2,8,21,47,127 \end{gathered}$ | $\begin{gathered} 45.8(58.1) \\ 2,10,27,58,153 \end{gathered}$ |
| 0.25 | $\begin{gathered} 55.4(69.2) \\ 3,13,33,71,182 \\ \hline \end{gathered}$ | $\begin{gathered} 41.8(52.9) \\ 2,10,25,54,137 \\ \hline \end{gathered}$ | $\begin{gathered} 28.8(23.4) \\ 9,16,23,35,67 \\ \hline \end{gathered}$ | $\begin{gathered} \hline 43.7(57.1) \\ 3,11,26,55,145 \\ \hline \end{gathered}$ | $\begin{gathered} \hline 53.1(66.9) \\ 3,13,31,68,176 \\ \hline \end{gathered}$ | $\begin{gathered} 21.8(17.5) \\ 5,11,18,27,51 \end{gathered}$ | $\begin{gathered} 32.2(44.5) \\ 2,7,18,40,109 \end{gathered}$ | $\begin{gathered} 40.0(51.9) \\ 2,9,23,51,134 \\ \hline \end{gathered}$ |
| 0.5 | $\begin{gathered} 34.5(45.1) \\ 2,8,20,43,115 \\ \hline \end{gathered}$ | $\begin{gathered} 29.6(38.5) \\ 2,7,17,37,100 \\ \hline \end{gathered}$ | $\begin{gathered} 19.6(13.8) \\ 6,11,16,24,43 \\ \hline \end{gathered}$ | $\begin{gathered} 26.4(35.7) \\ 2,6,15,32,89 \\ \hline \end{gathered}$ | $\begin{gathered} 33.6(44.0) \\ 2,8,19,42,112 \\ \hline \end{gathered}$ | $\begin{gathered} 15.9(11.6) \\ 4,9,13,20,36 \\ \hline \end{gathered}$ | $\begin{gathered} \hline 21.1(30.1) \\ 2,5,12,26,72 \\ \hline \end{gathered}$ | $\begin{gathered} 27.8(38.6) \\ 2,6,16,34,94 \\ \hline \end{gathered}$ |
| 0.75 | $\begin{gathered} 19.4(25.8) \\ 1,5,11,24,63 \\ \hline \end{gathered}$ | $\begin{gathered} 17.9(24.3) \\ 1,4,10,22,59 \\ \hline \end{gathered}$ | $\begin{gathered} 12.8(7.8) \\ 5,8,11,16,27 \\ \hline \end{gathered}$ | $\begin{gathered} 13.8(17.9) \\ 1,4,8,17,44 \\ \hline \end{gathered}$ | $\begin{gathered} 18.2(24.2) \\ 1,4,11,23,61 \\ \hline \end{gathered}$ | $\begin{gathered} 10.9(6.8) \\ 3,6,10,14,23 \\ \hline \end{gathered}$ | $\begin{gathered} 12.3(17.3) \\ 1,3,7,15,41 \\ \hline \end{gathered}$ | $\begin{gathered} 16.6(23.5) \\ 1,4,9,20,56 \\ \hline \end{gathered}$ |


| 1.0 | $\begin{gathered} 10.6(13.3) \\ 1,3,6,13,34 \\ \hline \end{gathered}$ | $\begin{gathered} 10.6(14.2) \\ 1,3,6,13,34 \\ \hline \end{gathered}$ | $\begin{gathered} 8.8(4.5) \\ 4,6,8,11,17 \\ \hline \end{gathered}$ | $\begin{gathered} 7.4(8.7) \\ 1,2,5,9,22 \\ \hline \end{gathered}$ | $\begin{gathered} 9.9(12.5) \\ 1,3,6,12,32 \\ \hline \end{gathered}$ | $\begin{gathered} 7.9(4.4) \\ 2,5,7,10,16 \\ \hline \end{gathered}$ | $\begin{gathered} 7.0(8.7) \\ 1,2,4,8,22 \\ \hline \end{gathered}$ | $\begin{gathered} 9.4(12.6) \\ 1,2,5,12,31 \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.5 | $\begin{gathered} 4.0(4.2) \\ 1,1,3,5,12 \\ \hline \end{gathered}$ | $\begin{gathered} 4.0(4.4) \\ 1,1,3,5,12 \\ \hline \end{gathered}$ | $\begin{gathered} 5.0(2.1) \\ 2,4,5,6,9 \\ \hline \end{gathered}$ | $\begin{gathered} 3.0(2.5) \\ 1,1,2,4,8 \\ \hline \end{gathered}$ | $\begin{gathered} 3.7(3.6) \\ 1,1,3,5,10 \\ \hline \end{gathered}$ | $\begin{gathered} 4.5(2.2) \\ 2,3,4,6,9 \\ \hline \end{gathered}$ | $\begin{gathered} 2.9(2.5) \\ 1,1,2,4,7 \\ \hline \end{gathered}$ | $\begin{gathered} 3.5(3.8) \\ 1,1,2,4,10 \\ \hline \end{gathered}$ |
| 2 | $\begin{gathered} 2.1(1.7) \\ 1,1,1,3,5 \end{gathered}$ | $\begin{aligned} & 2.1(1.7) \\ & 1,1,1,2,5 \end{aligned}$ | $\begin{gathered} 3.5(1.2) \\ 2,3,3,4,6 \end{gathered}$ | $\begin{gathered} 1.8(1.1) \\ 1,1,2,2,4 \end{gathered}$ | $\begin{gathered} 2.0(1.5) \\ 1,1,2,2,5 \end{gathered}$ | $\begin{gathered} 3.2(1.3) \\ 2,2,3,4,6 \end{gathered}$ | $\begin{gathered} 1.8(1.1) \\ 1,1,2,2,4 \end{gathered}$ | $\begin{gathered} 1.9(1.5) \\ 1,1,1,2,5 \end{gathered}$ |
| 3 | $\begin{gathered} 1.2(0.5) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.2(0.5) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 2.3(0.6) \\ 2,2,2,3,3 \end{gathered}$ | $\begin{gathered} 1.2(0.4) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.2(0.5) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 2.0(0.7) \\ 1,2,2,2,3 \\ \hline \end{gathered}$ | $\begin{gathered} 1.2(0.4) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.2(0.4) \\ 1,1,1,1,2 \end{gathered}$ |

$$
\delta=1.75
$$

| 0 | $\begin{gathered} 36.6(41.6) \\ 2,10,23,48,116 \\ \hline \end{gathered}$ | $\begin{gathered} 24.1(27.8) \\ 2,6,15,32,76 \\ \hline \end{gathered}$ | $\begin{gathered} 20.2(12.2) \\ 7,12,17,25,42 \end{gathered}$ | $\begin{gathered} 27.4(31.8) \\ 2,8,17,35,87 \end{gathered}$ | $\begin{gathered} 35.2(40.3) \\ 2,9,22,47,111 \\ \hline \end{gathered}$ | $\begin{gathered} 14.7(9.2) \\ 4,9,13,19,32 \\ \hline \end{gathered}$ | $\begin{gathered} 17.3(21.2) \\ 2,4,11,22,56 \end{gathered}$ | $\begin{gathered} 22.6(26.9) \\ 2,5,14,29,74 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.25 | $\begin{gathered} 31.9(36.7) \\ 2,8,20,42,103 \end{gathered}$ | $\begin{gathered} 21.9(25.8) \\ 1,6,14,28,69 \\ \hline \end{gathered}$ | $\begin{gathered} 18.2(10.7) \\ 6,11,16,23,38 \end{gathered}$ | $\begin{gathered} 23.7(27.98) \\ 2,7,15,30,75 \end{gathered}$ | $\begin{gathered} 30.2(35.4) \\ 2,8,19,39,97 \end{gathered}$ | $\begin{gathered} 13.6(8.5) \\ 4,8,12,17,29 \end{gathered}$ | $\begin{gathered} 15.7(19.7) \\ 2,4,9,20,51 \end{gathered}$ | $\begin{gathered} 20.5(24.8) \\ 1,5,12,27,67 \end{gathered}$ |
| 0.5 | $\begin{gathered} 22.5(26.6) \\ 1,6,14,29,72 \end{gathered}$ | $\begin{gathered} 17.0(20.2) \\ 1,5,10,22,54 \end{gathered}$ | $\begin{gathered} 14.3(8.0) \\ 5,9,13,18,29 \end{gathered}$ | $\begin{gathered} 16.1(19.1) \\ 2,5,10,20,51 \end{gathered}$ | $\begin{gathered} 21.4(25.5) \\ 1,6,13,28,68 \end{gathered}$ | $\begin{gathered} 11.2(6.6) \\ 3,7,10,14,23 \end{gathered}$ | $\begin{gathered} 11.9(14.4) \\ 1,3,7,15,38 \end{gathered}$ | $\begin{gathered} 20.5(24.8) \\ 1,5,12,27,67 \end{gathered}$ |
| 0.75 | $\begin{gathered} 14.3(16.8) \\ 1,4,9,18,46 \end{gathered}$ | $\begin{gathered} 11.9(14.0) \\ 1,3,7,15,38 \end{gathered}$ | $\begin{gathered} 10.7(5.5) \\ 4,7,10,13,21 \end{gathered}$ | $\begin{gathered} 10.1(11.6) \\ 1,3,6,13,31 \end{gathered}$ | $\begin{gathered} 13.4(15.8) \\ 1,4,8,17,43 \end{gathered}$ | $\begin{gathered} 8.8(5.0) \\ 2,5,8,11,18 \end{gathered}$ | $\begin{gathered} 8.0(9.5) \\ 1,2,5,10,25 \end{gathered}$ | $\begin{gathered} 10.8(13.3) \\ 1,3,6,14,35 \end{gathered}$ |
| 1.0 | $\begin{gathered} 8.9(10.2) \\ 1,3,6,11,28 \end{gathered}$ | $\begin{gathered} 8.0(9.3) \\ 1,2,5,10,25 \end{gathered}$ | $\begin{gathered} 8.1(3.8) \\ 3,5,7,10,15 \end{gathered}$ | $\begin{gathered} 6.2(6.5) \\ 1,2,4,8,18 \end{gathered}$ | $\begin{gathered} 8.3(9.4) \\ 1,2,5,11,26 \end{gathered}$ | $\begin{gathered} 6.8(3.7) \\ 2,4,6,9,14 \end{gathered}$ | $\begin{gathered} 5.4(5.9) \\ 1,2,4,7,16 \end{gathered}$ | $\begin{gathered} 7.2(8.6) \\ 1,2,4,9,23 \end{gathered}$ |
| 1.5 | $\begin{gathered} 3.9(3.9) \\ 1,1,3,5,11 \end{gathered}$ | $\begin{gathered} 3.7(3.8) \\ 1,1,2,5,11 \end{gathered}$ | $\begin{gathered} 5.0(2.0) \\ 2,4,5,6,9 \end{gathered}$ | $\begin{gathered} 3.0(2.4) \\ 1,1,2,4,8 \end{gathered}$ | $\begin{gathered} 3.7(3.5) \\ 1,1,3,5,10 \end{gathered}$ | $\begin{gathered} 4.4(2.1) \\ 2,3,4,6,8 \end{gathered}$ | $\begin{gathered} 2.8(2.2) \\ 1,1,2,3,7 \end{gathered}$ | $\begin{gathered} 3.4(3.3) \\ 1,1,2,4,9 \end{gathered}$ |
| 2 | $\begin{gathered} 2.2 \quad(1.8) \\ 1,1,2,3,6 \end{gathered}$ | $\begin{gathered} 2.1(1.7) \\ 1,1,2,3,5 \end{gathered}$ | $\begin{gathered} 3.6(1.3) \\ 2,3,3,4,6 \end{gathered}$ | $\begin{gathered} 1.8(1.1) \\ 1,1,2,2,4 \end{gathered}$ | $\begin{gathered} 2.1(1.6) \\ 1,1,2,3,5 \end{gathered}$ | $\begin{gathered} 3.2(1.4) \\ 2,2,3,4,6 \end{gathered}$ | $\begin{gathered} 1.8(1.1) \\ 1,1,2,2,4 \end{gathered}$ | $\begin{gathered} 2.0(1.5) \\ 1,1,2,2,5 \end{gathered}$ |
| 3 | $\begin{gathered} 1.3(0.6) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.2(0.6) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 2.5(0.7) \\ 2,2,2,3,4 \end{gathered}$ | $\begin{gathered} 1.3(0.5) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.3(0.6) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 2.1(0.8) \\ 1,2,2,2,4 \end{gathered}$ | $\begin{gathered} 1.2(0.5) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.2(0.5) \\ 1,1,1,1,2 \end{gathered}$ |

$\delta=2.00$

| 0 | $\begin{array}{cc} 23.2 & (25.3) \\ 2,6,15,31,72 \end{array}$ | $\begin{gathered} 14.6(16.0) \\ 1,4,10,19,45 \end{gathered}$ | $\begin{gathered} 14.5(7.5) \\ 6,9,13,18,28 \end{gathered}$ | $\begin{gathered} 16.3(17.6) \\ 2,5,11,21,50 \end{gathered}$ | $\begin{gathered} 21.9(24.2) \\ 2,6,14,29,68 \end{gathered}$ | $\begin{gathered} 10.4(5.8) \\ 3,6,9,13,21 \end{gathered}$ | $\begin{gathered} 10.1(11.1) \\ 1,3,7,13,31 \end{gathered}$ | $\begin{gathered} 13.3(15.1) \\ 1,3,8,17,42 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.25 | $\begin{gathered} 20.4(22.6) \\ 1,6,13,27,64 \end{gathered}$ | $\begin{gathered} 13.7(15.2) \\ 1,4,9,18,42 \end{gathered}$ | $\begin{gathered} 13.5(6.9) \\ 5,9,12,17,26 \end{gathered}$ | $\begin{gathered} 14.4(15.6) \\ 1,4,9,19,44 \end{gathered}$ | $\begin{gathered} 19.4(21.5) \\ 1,5,13,26,61 \end{gathered}$ | $\begin{gathered} 10.0(5.6) \\ 3,6,9,13,20 \end{gathered}$ | $\begin{gathered} 9.3(10.3) \\ 1,3,6,12,29 \end{gathered}$ | $\begin{gathered} 12.5(14.2) \\ 1,3,8,16,40 \end{gathered}$ |
| 0.5 | $\begin{gathered} 15.9(17.7) \\ 1,4,10,21,49 \end{gathered}$ | $\begin{gathered} 11.4(12.9) \\ 1,3,7,15,35 \end{gathered}$ | $\begin{gathered} 11.5(5.7) \\ 5,7,10,14,22 \end{gathered}$ | $\begin{gathered} 11.1(11.9) \\ 1,4,7,14,33 \end{gathered}$ | $\begin{gathered} 14.9(16.6) \\ 1,4,10,20,46 \end{gathered}$ | $\begin{gathered} 8.7(4.8) \\ 2,5,8,11,18 \end{gathered}$ | $\begin{gathered} 7.7(8.5) \\ 1,2,5,10,23 \end{gathered}$ | $\begin{gathered} 10.3(11.8) \\ 1,3,6,13,33 \end{gathered}$ |
| 0.75 | $\begin{gathered} 11.1(12.3) \\ 1,3,7,15,34 \end{gathered}$ | $\begin{gathered} 8.7(10.0) \\ 1,3,6,11,27 \end{gathered}$ | $\begin{gathered} 9.2(4.4) \\ 4,6,8,11,18 \end{gathered}$ | $\begin{gathered} 7.8(8.2) \\ 1,3,5,10,23 \end{gathered}$ | $\begin{gathered} 10.4(11.5) \\ 1,3,7,14,32 \end{gathered}$ | $\begin{gathered} 7.3(3.9) \\ 2,5,7,9,14 \end{gathered}$ | $\begin{gathered} 5.9(6.0) \\ 1,2,4,7,17 \end{gathered}$ | $\begin{gathered} 7.8(8.8) \\ 1,2,5,10,24 \end{gathered}$ |
| 1.0 | $\begin{gathered} 7.6(8.3) \\ 1,2,5,10,23 \end{gathered}$ | $\begin{gathered} 6.3(7.0) \\ 1,2,4,8,19 \end{gathered}$ | $\begin{gathered} 7.4(3.3) \\ 3,5,7,9,13 \end{gathered}$ | $\begin{gathered} 5.4(5.2) \\ 1,2,4,7,15 \end{gathered}$ | $\begin{gathered} 7.1(7.7) \\ 1,2,5,9,21 \end{gathered}$ | $\begin{gathered} 6.1(3.1) \\ 2,4,6,8,12 \end{gathered}$ | $\begin{gathered} 4.4(4.3) \\ 1,2,3,6,12 \end{gathered}$ | $\begin{gathered} 5.6(6.2) \\ 1,2,4,7,17 \end{gathered}$ |
| 1.5 | $\begin{gathered} 3.8(3.7) \\ 1,1,3,5,11 \end{gathered}$ | $\begin{gathered} 3.4(3.3) \\ 1,1,2,4,10 \end{gathered}$ | $\begin{aligned} & 4.99(1.99) \\ & 2,4,5,6,9 \end{aligned}$ | $\begin{gathered} 2.98(2.3) \\ 1,1,2,4,7 \end{gathered}$ | $\begin{gathered} 3.5(3.3) \\ 1,1,3,5,10 \end{gathered}$ | $\begin{gathered} 4.3(2.0) \\ 2,3,4,5,8 \end{gathered}$ | $\begin{gathered} 2.6(2.0) \\ 1,1,2,3,6 \end{gathered}$ | $\begin{gathered} 3.1(2.9) \\ 1,1,2,4,9 \end{gathered}$ |
| 2 | $\begin{gathered} 2.3(1.8) \\ 1,1,2,3,6 \end{gathered}$ | $\begin{gathered} 2.1(1.7) \\ 1,1,2,3,5 \end{gathered}$ | $\begin{gathered} 3.7(1.3) \\ 2,3,3,4,6 \end{gathered}$ | $\begin{gathered} 1.99(1.2) \\ 1,1,2,2,4 \end{gathered}$ | $\begin{gathered} 2.2(1.7) \\ 1,1,2,3,5 \end{gathered}$ | $\begin{gathered} 3.2(1.4) \\ 2,2,3,4,6 \end{gathered}$ | $\begin{gathered} 1.9(1.1) \\ 1,1,2.2,4 \end{gathered}$ | $\begin{gathered} 2.0(1.4) \\ 1,1,2,2,5 \end{gathered}$ |
| 3 | $\begin{gathered} 1.3(0.7) \\ 1,1,1,2,3 \end{gathered}$ | $\begin{gathered} 1.3(0.6) \\ 1,1,1,1,3 \end{gathered}$ | $\begin{gathered} 2.6(0.7) \\ 2,2,2,3,4 \end{gathered}$ | $\begin{gathered} 1.3(0.6) \\ 1,1,1,2,2 \end{gathered}$ | $\begin{gathered} 1.3(0.6) \\ 1,1,1,2,3 \end{gathered}$ | $\begin{gathered} 2.2(0.8) \\ 1,2,2,3,4 \end{gathered}$ | $\begin{gathered} 1.3(0.5) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.3(0.6) \\ 1,1,1,1,2 \end{gathered}$ |

** indicates variance estimate is not meaningful and \# indicates the percentile value exceeds 5000 .

Table-6. Performance comparisons for $m=300, n=5$ between various competetive charts for the Laplace $(\theta, \delta)$ distribution with $\mathrm{ARL}_{0}=500$.

|  | Shewhart Lepage Chart | Shewhart Cucconi Chart | $k=0$ | $k=3$ | $k=6$ | $k=0$ | $k=1.5$ | $k=3.0$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\delta=0.50$ |  |  |  |  |  |  |  |  |
| 0 | $\begin{gathered} >2900\left(^{* *}\right) \\ 177,1063,2954, \#, \# \end{gathered}$ | $\begin{gathered} >3000\left({ }^{* *}\right) \\ 177,1152,3085, \#, \# \end{gathered}$ | $\begin{gathered} 47.1(39.9) \\ 18,28,39,55,100 \end{gathered}$ | $\begin{gathered} >1800\left(^{* *}\right) \\ 60,376,1149,3175, \# \end{gathered}$ | $\begin{gathered} >3900\left(^{* *}\right) \\ 457,3000, \#, \#, \# \end{gathered}$ | $\begin{gathered} 76.1(74.5) \\ 31,46,62,87,158 \end{gathered}$ | $>4900\left(^{* *}\right)$ <br> \#, \#, \#, \#, \# | $>4900\left(^{* *}\right)$ <br> \#, \#, \#, \#, \# |
| 0.25 | $\begin{gathered} >3800(* *) \\ 434,2630, \#, \#, \# \end{gathered}$ | $\begin{gathered} >3800(* *) \\ 434,2638, \#, \#, \# \end{gathered}$ | $\begin{gathered} 61.3(40.9) \\ 24,38,52,73,127 \end{gathered}$ | $\begin{gathered} >3700\left(^{* *}\right) \\ 300,2146, \#, \#, \# \end{gathered}$ | $\begin{gathered} >4400(* *) \\ 1004, \text {, \#, \#, \#, \# } \end{gathered}$ | $\begin{gathered} 62.5(31.5) \\ 31,43,56,73,115 \end{gathered}$ | $>4700(* *)$ <br> 2578, \#, \#, \#, \# | $>4700(* *)$ <br> 2195, \#, \#, \#, \# |
| 0.5 | $\begin{gathered} >2200\left(^{* *}\right) \\ 77,533,1686,4807, \# \end{gathered}$ | $\begin{gathered} >2300\left({ }^{* *}\right) \\ 77,542,1685,4822, \# \end{gathered}$ | $\begin{gathered} 44.0(17.7) \\ 21,32,41,53,76 \end{gathered}$ | $\begin{gathered} >2700(* *) \\ 92,721,2587,5000, \# \end{gathered}$ | $\begin{gathered} >2900(* *) \\ 126,888,2989, \#, \# \end{gathered}$ | $\begin{gathered} 37.5(12.2) \\ 21,29,36,44,60 \end{gathered}$ | $\begin{gathered} >3200\left(^{* *}\right) \\ 147,1226,4556, \#, \# \end{gathered}$ | $\begin{gathered} >3300(* *) \\ 195,1407,4715, \#, \# \end{gathered}$ |
| 0.75 | $\begin{gathered} 455.6(823.7) \\ 8,51,157,461,2002 \\ \hline \end{gathered}$ | $\begin{gathered} 459.6(832.3) \\ 8,50,162,468,2035 \\ \hline \end{gathered}$ | $\begin{gathered} \hline 19.3(7.8) \\ 9,14,18,23,34 \\ \hline \end{gathered}$ | $\begin{gathered} 384.9(861.0) \\ 5,24,80,290,1963 \\ \hline \end{gathered}$ | $\begin{gathered} 693.4(1122.7) \\ 11,72,237,733,3517 \\ \hline \end{gathered}$ | $\begin{gathered} 19.0(6.5) \\ 10,14,18,23,31 \\ \hline \end{gathered}$ | $\begin{gathered} 662.0(1210.9) \\ 5,39,151,589,4246 \\ \hline \end{gathered}$ | $\begin{gathered} >1000\left({ }^{* *}\right) \\ 15,123,409,1281, \# \\ \hline \end{gathered}$ |
| 1.0 | $\begin{gathered} 54.6(134.6) \\ 2,7,20,52,206 \\ \hline \end{gathered}$ | $\begin{gathered} 62.6(138.0) \\ 2,8,21,54,210 \\ \hline \end{gathered}$ | $\begin{gathered} 9.5(3.3) \\ 5,7,9,11,16 \\ \hline \end{gathered}$ | $\begin{gathered} 16.0(58.0) \\ 2,4,7,14,47 \\ \hline \end{gathered}$ | $\begin{gathered} 71.9(213.9) \\ 2,7,20,57,277 \\ \hline \end{gathered}$ | $\begin{gathered} 10.1(3.5) \\ 5,8,10,12,17 \end{gathered}$ | $\begin{array}{r} 29.5(133.5) \\ 2,4,9,20,91 \\ \hline \end{array}$ | $\begin{gathered} 133.6(371.5) \\ 2,10,34,105,537 \\ \hline \end{gathered}$ |
| 1.5 | $\begin{gathered} 2.6(3.0) \\ 1,1,2,3,7 \end{gathered}$ | $\begin{gathered} 2.7(3.0) \\ 1,1,3,3,7 \end{gathered}$ | $\begin{gathered} 4.1(1.0) \\ 3,3,4,5,6 \end{gathered}$ | $\begin{gathered} 2.0(1.0) \\ 1,1,2,2,4 \end{gathered}$ | $\begin{gathered} 2.4(2.2) \\ 1,1,2,3,6 \end{gathered}$ | $\begin{gathered} 4.2(1.3) \\ 2,3,4,5,7 \end{gathered}$ | $\begin{gathered} 2.2(1.2) \\ 1,1,2,3,5 \end{gathered}$ | $\begin{gathered} 2.9(3.4) \\ 1,1,2,3,8 \end{gathered}$ |
| 2 | $\begin{gathered} 1.2(0.4) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.3(0.4) \\ 1,1,1,1,2 \\ \hline \end{gathered}$ | $\begin{gathered} 2.7(0.6) \\ 2,2,3,3,4 \end{gathered}$ | $\begin{gathered} 1.2(0.4) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.2(0.4) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 2.6(0.7) \\ 2,2,3,3,4 \\ \hline \end{gathered}$ | $\begin{gathered} 1.2(0.4) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.2(0.5) \\ 1,1,1,1,2 \end{gathered}$ |
| 3 | $\begin{gathered} 1.0(0.1) \\ 1,1,1,1,1 \\ \hline \end{gathered}$ | $\begin{gathered} 1.0(0.1) \\ 1,1,1,1,1 \\ \hline \end{gathered}$ | $\begin{gathered} 2.0(0.1) \\ 2,2,2,2,2 \end{gathered}$ | $\begin{gathered} 1.0(0.1) \\ 1,1,1,1,1 \\ \hline \end{gathered}$ | $\begin{gathered} 1.0(0.1) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 2.0(0.20 \\ 2,2,2,2,2 \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \\ \hline \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ |
| $\delta=1.00$ |  |  |  |  |  |  |  |  |
| 0 | $502.8(563.0)$ $23,129,321,673,1607$ | $500.3(587.1)$ $22,123,310,656,1638$ | 501.7 (649.6) $59,141,283,586,1689$ | 505.6 (577.4) $24,129,318,669,1629$ | $\begin{gathered} 498.6(560.1) \\ 23,130,318,666,1575 \end{gathered}$ | $\begin{gathered} 503.7(718.1) \\ 49,124,258,562,1802 \end{gathered}$ | $\begin{gathered} 499.6(601.97) \\ 19,119,299,652,1646 \end{gathered}$ | $505.5(593.0)$ $21,124,312,665,1639$ |
| 0.25 | $\begin{gathered} 305.5(370.8) \\ 13,74,184,398,997 \\ \hline \end{gathered}$ | $\begin{gathered} 341.2(424.7) \\ 14,79,201,440,1133 \end{gathered}$ | $\begin{gathered} 202.6(279.5) \\ 34,70,122,225,622 \\ \hline \end{gathered}$ | $\begin{gathered} 303.0(380.7) \\ 13,70,178,388,1019 \\ \hline \end{gathered}$ | $\begin{gathered} 310.8(382.9) \\ 13,74,187,403,1018 \\ \hline \end{gathered}$ | $\begin{gathered} 185.1(718.1) \\ 28,61,107,203,578 \end{gathered}$ | $\begin{gathered} 325.8(426.2) \\ 10,71,185,414,1112 \end{gathered}$ | $\begin{gathered} 336.8(424.9) \\ 13,77,197,436,1119 \\ \hline \end{gathered}$ |
| 0.5 | $\begin{gathered} 111.8(142.5) \\ 5,26,65,142,372 \end{gathered}$ | $\begin{gathered} 139.2(183.4) \\ 6,31,80,175,470 \end{gathered}$ | $\begin{gathered} 47.99(36.4) \\ 15,26,39,58,110 \end{gathered}$ | $\begin{gathered} 96.1(128.1) \\ 5,22,54,121,325 \end{gathered}$ | $\begin{gathered} 109.7(140.97) \\ 5,25,64,139,371 \end{gathered}$ | $\begin{gathered} 44.6(35.1) \\ 13,24,36,55,102 \end{gathered}$ | $\begin{gathered} 112.2(161.8) \\ 3,22,60,138,390 \\ \hline \end{gathered}$ | $\begin{gathered} 134.6(182.7) \\ 4,29,76,168,462 \end{gathered}$ |
| 0.75 | $\begin{gathered} 37.5(46.99) \\ 2,9,22,48,123 \end{gathered}$ | $\begin{gathered} 50.6(67.1) \\ 2,12,29,63,169 \end{gathered}$ | $\begin{gathered} 19.7(9.7) \\ 8,13,18,24,38 \end{gathered}$ | $\begin{gathered} 26.2(34.0) \\ 2,7,15,32,86 \end{gathered}$ | $\begin{gathered} 36.1(46.3) \\ 2,9,21,46,120 \end{gathered}$ | $\begin{gathered} 18.8(9.8) \\ 7,12,17,23,37 \end{gathered}$ | $\begin{gathered} 31.6(45.6) \\ 2,7,17,39,108 \end{gathered}$ | $\begin{gathered} 45.3(61.4) \\ 2,10,25,57,154 \end{gathered}$ |
| 1.0 | $\begin{gathered} 13.97(16.4) \\ 1,4,9,18,44 \end{gathered}$ | $\begin{gathered} 18.8(24.0) \\ 1,5,11,24,61 \\ \hline \end{gathered}$ | $\begin{gathered} 10.9(4.4) \\ 5,8,10,13,19 \end{gathered}$ | $\begin{gathered} 8.7(9.3) \\ 1,3,6,11,25 \end{gathered}$ | $\begin{gathered} 12.9(15.4) \\ 1,4,8,17,41 \end{gathered}$ | $\begin{gathered} 10.5(4.7) \\ 4,7,10,13,19 \end{gathered}$ | $\begin{gathered} 9.8(11.8) \\ 1,3,6,12,30 \end{gathered}$ | $\begin{gathered} 15.7(20.9) \\ 1,4,9,20,52 \end{gathered}$ |
| 1.5 | $\begin{gathered} 3.3(3.0) \\ 1,1,2,4,9 \end{gathered}$ | $\begin{gathered} 3.98(3.97) \\ 1,1,3,5,11 \\ \hline \end{gathered}$ | $\begin{gathered} 5.2(1.7) \\ 3,4,5,6,8 \end{gathered}$ | $\begin{gathered} 2.5(1.7) \\ 1,1,2,3,6 \end{gathered}$ | $\begin{gathered} 3.1(2.6) \\ 1,1,2,4,8 \end{gathered}$ | $\begin{gathered} \hline 4.9(1.97) \\ 2,4,5,6,8 \\ \hline \end{gathered}$ | $\begin{gathered} 2.7(1.8) \\ 1,1,2,3,6 \end{gathered}$ | $\begin{gathered} 3.2(2.98) \\ 1,1,2,4,9 \end{gathered}$ |
| 2 | $\begin{gathered} 1.7(1.1) \\ 1,1,1,2,4 \end{gathered}$ | $\begin{gathered} 1.7(1.2) \\ 1,1,1,2,4 \end{gathered}$ | $\begin{gathered} 3.5(0.9) \\ 2,3,3,4,5 \end{gathered}$ | $\begin{gathered} 1.5(0.8) \\ 1,1,1,2,3 \end{gathered}$ | $\begin{gathered} 1.6(0.9) \\ 1,1,1,2,3 \end{gathered}$ | $\begin{aligned} & \hline 3.2(1.1) \\ & 2,2,3,4,5 \end{aligned}$ | $\begin{gathered} 1.6(0.8) \\ 1,1,1,2,3 \end{gathered}$ | $\begin{gathered} 1.6(0.9) \\ 1,1,1,2,3 \end{gathered}$ |
| 3 | $\begin{gathered} 1.1(0.3) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.1(0.2) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 2.3(0.5) \\ 2,2,2,3,3 \end{gathered}$ | $\begin{gathered} 1.1(0.3) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.1(0.3) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{array}{r} 2.2(0.5) \\ 2,2,2,2,3 \end{array}$ | $\begin{gathered} 1.1(0.2) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.1(0.2) \\ 1,1,1,1,2 \end{gathered}$ |
| $\delta=1.25$ |  |  |  |  |  |  |  |  |
| 0 | $150.1(164.1)$ $7,40,98,202,468$ | $\begin{gathered} 122.99(134.99) \\ 6,33,80,166,385 \\ \hline \end{gathered}$ | $\begin{gathered} 84.5(68.8) \\ 24,43,66,104,203 \\ \hline \end{gathered}$ | $\begin{gathered} 135.8(150.4) \\ 7,36,88,181,427 \\ \hline \end{gathered}$ | $\begin{gathered} 147.5(159.5) \\ 7,39,97,200,457 \\ \hline \end{gathered}$ | $\begin{gathered} 62.1(49.5) \\ 16,32,49,77,149 \\ \hline \end{gathered}$ | $\begin{gathered} 103.1(119.6) \\ 3,26,65,137,330 \\ \hline \end{gathered}$ | $119.8(134.3)$ $5,30,77,160,383$ |
| 0.25 | $\begin{gathered} 109.1(122.4) \\ 6,28,70,146,342 \end{gathered}$ | $\begin{gathered} 97.2(110.7) \\ 5,25,62,129,308 \end{gathered}$ | $\begin{gathered} 59.3(42.2) \\ 18,33,49,73,137 \end{gathered}$ | $\begin{gathered} 94.7(108.3) \\ 5,25,60,125,304 \end{gathered}$ | $\begin{gathered} 108.0(122.4) \\ 5,28,69,144,341 \end{gathered}$ | $\begin{gathered} 46.8(33.6) \\ 13,26,38,58,107 \end{gathered}$ | $\begin{gathered} 78.6(93.9) \\ 3,19,48,103,258 \end{gathered}$ | $\begin{gathered} 93.98(109.4) \\ 4,23,59,124,301 \end{gathered}$ |
| 0.5 | $\begin{gathered} 53.9(62.1) \\ 3,14,34,71,174 \\ \hline \end{gathered}$ | $\begin{gathered} 54.5(64.3) \\ 3,14,34,72,174 \\ \hline \end{gathered}$ | $\begin{gathered} 30.4(17.1) \\ 11,19,27,38,62 \\ \hline \end{gathered}$ | $\begin{gathered} 42.6(49.8) \\ 3,11,26,56,136 \\ \hline \end{gathered}$ | $\begin{gathered} 52.3(60.8) \\ 3,14,33,68,169 \\ \hline \end{gathered}$ | $\begin{gathered} 26.1(15.3) \\ 8,16,23,33,55 \end{gathered}$ | $\begin{gathered} 39.0(48.1) \\ 2,9,23,51,127 \end{gathered}$ | $\begin{gathered} 51.0(61.98) \\ 2,12,31,67,165 \\ \hline \end{gathered}$ |
| 0.75 | $\begin{gathered} 24.3(27.5) \\ 2,7,15,32,76 \\ \hline \end{gathered}$ | $\begin{gathered} 26.5(31.4) \\ 2,7,17,34,84 \end{gathered}$ | $\begin{gathered} 16.7(7.8) \\ 7,11,15,21,31 \end{gathered}$ | $\begin{gathered} 16.9(18.9) \\ 2,5,11,22,52 \end{gathered}$ | $\begin{gathered} 22.8(25.98) \\ 2,6,15,30,73 \end{gathered}$ | $\begin{gathered} 15.1(7.6) \\ 5,10,14,19,29 \end{gathered}$ | $\begin{gathered} 16.4(19.3) \\ 2,4,10,21,52 \\ \hline \end{gathered}$ | $\begin{gathered} 23.4(27.9) \\ 2,6,14,31,76 \\ \hline \end{gathered}$ |
| 1.0 | $\begin{gathered} 11.4(12.3) \\ 1,3,7,15,35 \end{gathered}$ | $\begin{gathered} 12.7(14.1) \\ 1,4,8,17,40 \end{gathered}$ | $\begin{gathered} 10.5(4.3) \\ 5,7,10,13,18 \end{gathered}$ | $\begin{gathered} 7.5(7.4) \\ 1,3,5,10,21 \end{gathered}$ | $\begin{gathered} 10.4(11.2) \\ 1,3,7,14,32 \end{gathered}$ | $\begin{gathered} 9.6(4.4) \\ 3,7,9,12,18 \end{gathered}$ | $\begin{gathered} 7.6(7.9) \\ 1,2,5,10,22 \end{gathered}$ | $\begin{gathered} 10.8(12.5) \\ 1,3,7,14,34 \end{gathered}$ |
| 1.5 | $\begin{gathered} 3.6(3.3) \\ 1,1,3,5,10 \end{gathered}$ | $\begin{gathered} 3.9(3.7) \\ 1,1,3,5,11 \end{gathered}$ | $\begin{gathered} 5.5(1.9) \\ 3,4,5,7,9 \end{gathered}$ | $\begin{gathered} 2.8(1.9) \\ 1,1,2,4,6 \end{gathered}$ | $\begin{gathered} 3.3(2.8) \\ 1,1,2,4,9 \end{gathered}$ | $\begin{gathered} 5.1(2.1) \\ 2,4,5,6,9 \end{gathered}$ | $\begin{gathered} 2.8(1.97) \\ 1,1,2,4,7 \end{gathered}$ | $\begin{gathered} 3.3(2.9) \\ 1,1,2,4,9 \end{gathered}$ |
| 2 | 1.9 (1.3) | 1.9 (1.4) | 3.7 (1.1) | 1.7 (0.9) | 1.8 (1.1) | 3.4 (1.3) | 1.7 (0.9) | 1.7 (1.1) |


|  | 1, 1, 1, 2, 4 | 1, 1, 1, 2, 5 | 2, 3, 4, 4, 6 | 1, 1, 1, 2, 3 | 1, 1, 1, 2, 4 | 2, 2, 3, 4, 6 | 1, 1, 1, 2, 3 | 1, 1, 1, 2, 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | $\begin{gathered} 1.1(0.4) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.1(0.3) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 2.4(0.6) \\ 2,2,2,3,3 \end{gathered}$ | $\begin{gathered} 1.1(0.4) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.1(0.4) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 2.3(0.6) \\ 2,2,2,3,3 \end{gathered}$ | $\begin{gathered} 1.1(0.3) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.1(0.3) \\ 1,1,1,1,2 \end{gathered}$ |
| $\delta=1.50$ |  |  |  |  |  |  |  |  |
| 0 | $\begin{gathered} 66.3(70.2) \\ 4,18,44,90,205 \end{gathered}$ | $\begin{gathered} \hline 48.2(51.7) \\ 3,13,32,65,149 \end{gathered}$ | $\begin{gathered} \hline 36.2(19.6) \\ 14,23,32,45,73 \end{gathered}$ | $\begin{gathered} \hline 52.6(56.3) \\ 3,15,35,71,162 \end{gathered}$ | $\begin{gathered} 64.1(67.9) \\ 4,18,43,87,196 \\ \hline \end{gathered}$ | $\begin{gathered} 26.4(14.7) \\ 9,16,23,33,54 \end{gathered}$ | $\begin{gathered} 34.9(39.1) \\ 2,9,23,47,110 \end{gathered}$ | $\begin{gathered} \hline 44.8(48.9) \\ 2,12,29,61,139 \\ \hline \end{gathered}$ |
| 0.25 | $\begin{gathered} 53.3(56.9) \\ 3,15,35,72,164 \end{gathered}$ | $\begin{gathered} 41.3(44.4) \\ 2,11,27,56,129 \\ \hline \end{gathered}$ | $\begin{gathered} 30.5(15.9) \\ 12,20,27,38,60 \end{gathered}$ | $\begin{gathered} 41.5(45.3) \\ 3,12,27,55,129 \\ \hline \end{gathered}$ | $\begin{gathered} 51.6(55.0) \\ 3,14,34,70,160 \\ \hline \end{gathered}$ | $\begin{gathered} 23.3(12.8) \\ 8,15,21,29,47 \end{gathered}$ | $\begin{gathered} 29.2(32.6) \\ 2,8,19,39,92 \end{gathered}$ | $\begin{gathered} 38.2(42.1) \\ 2,10,25,52,120 \\ \hline \end{gathered}$ |
| 0.5 | $\begin{gathered} 32.2(35.2) \\ 2,9,21,43,101 \\ \hline \end{gathered}$ | $\begin{gathered} 27.8(29.9) \\ 2,8,18,37,86 \\ \hline \end{gathered}$ | $\begin{gathered} 21.2(10.1) \\ 9,14,19,26,40 \end{gathered}$ | $\begin{gathered} 23.6(25.4) \\ 2,7,16,31,72 \end{gathered}$ | $\begin{gathered} 30.8(33.5) \\ 2,8,20,41,96 \\ \hline \end{gathered}$ | $\begin{gathered} 17.2(8.8) \\ 6,11,16,22,33 \end{gathered}$ | $\begin{gathered} 18.6(20.7) \\ 2,5,12,25,58 \\ \hline \end{gathered}$ | $\begin{gathered} 25.2(28.1) \\ 2,6,16,34,79 \end{gathered}$ |
| 0.75 | $\begin{gathered} 17.5(18.7) \\ 1,5,12,23,54 \end{gathered}$ | $\begin{gathered} 16.7(18.1) \\ 1,5,11,22,52 \end{gathered}$ | $\begin{gathered} 14.2(6.2) \\ 6,10,13,17,26 \end{gathered}$ | $\begin{gathered} 12.2(12.5) \\ 1,4,8,16,36 \end{gathered}$ | $\begin{gathered} 16.5(17.7) \\ 1,5,11,22,51 \end{gathered}$ | $\begin{gathered} 12.0(5.8) \\ 4,8,11,15,23 \end{gathered}$ | $\begin{gathered} 10.5(11.1) \\ 1,3,7,14,32 \end{gathered}$ | $\begin{gathered} 14.4(16.0) \\ 1,4,9,19,45 \end{gathered}$ |
| 1.0 | $\begin{gathered} 9.7(10.1) \\ 1,3,7,13,29 \end{gathered}$ | $\begin{gathered} 9.5(10.0) \\ 1,3,6,13,29 \end{gathered}$ | $\begin{gathered} 9.9(3.9) \\ 5,7,9,12,17 \end{gathered}$ | $\begin{gathered} 6.7(6.1) \\ 1,3,5,9,19 \end{gathered}$ | $\begin{gathered} 8.96(9.2) \\ 1,3,6,12,26 \end{gathered}$ | $\begin{gathered} 8.6(3.9) \\ 3,6,8,11,16 \end{gathered}$ | $\begin{gathered} 6.0(5.7) \\ 1,2,4,8,17 \end{gathered}$ | $\begin{gathered} 8.1(8.7) \\ 1,2,5,11,25 \end{gathered}$ |
| 1.5 | $\begin{gathered} 3.7(3.4) \\ 1,1,3,5,10 \end{gathered}$ | $\begin{gathered} 3.7(3.4) \\ 1,1,3,5,10 \end{gathered}$ | $\begin{gathered} 5.7(1.8) \\ 3,4,5,7,9 \end{gathered}$ | $\begin{gathered} 2.9(2.1) \\ 1,1,2,4,7 \end{gathered}$ | $\begin{gathered} 3.4(2.9) \\ 1,1,3,4,9 \end{gathered}$ | $\begin{gathered} 5.0(2.1) \\ 2,3,5,6,9 \end{gathered}$ | $\begin{gathered} 2.7(1.95) \\ 1,1,2,4,7 \end{gathered}$ | $\begin{gathered} 3.2(2.7) \\ 1,1,2,4,9 \end{gathered}$ |
| 2 | $\begin{gathered} 2.0(1.5) \\ 1,1,2,3,5 \end{gathered}$ | $\begin{gathered} 2.0(1.4) \\ 1,1,1,2,5 \end{gathered}$ | $\begin{gathered} 3.9(1.2) \\ 2,3,4,5,6 \end{gathered}$ | $\begin{gathered} 1.8(1.0) \\ 1,1,2,2,4 \end{gathered}$ | $\begin{gathered} 1.9(1.3) \\ 1,1,2,2,5 \end{gathered}$ | $\begin{gathered} 3.5(1.3) \\ 2,2,3,4,6 \end{gathered}$ | $\begin{gathered} 1.8(0.99) \\ 1,1,2,2,4 \end{gathered}$ | $\begin{gathered} 1.8(1.2) \\ 1,1,1,2,4 \end{gathered}$ |
| 3 | $\begin{gathered} 1.2(0.5) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.2(0.4) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 2.6(0.7) \\ 2,2,3,3,4 \\ \hline \end{gathered}$ | $\begin{gathered} 1.2(0.4) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.2(0.5) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 2.3(0.7) \\ 2,2,2,3,4 \\ \hline \end{gathered}$ | $\begin{gathered} 1.2(0.4) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.2(0.4) \\ 1,1,1,1,2 \end{gathered}$ |
| $\delta=1.75$ |  |  |  |  |  |  |  |  |
| 0 | $\begin{gathered} 36.2(37.1) \\ 2,10,24,49,109 \end{gathered}$ | $\begin{gathered} 24.6(25.4) \\ 2,7,17,33,74 \end{gathered}$ | $\begin{gathered} 22.5(10.3) \\ 9,15,21,28,42 \end{gathered}$ | $\begin{gathered} 26.3(27.0) \\ 2,8,18,35,79 \end{gathered}$ | $\begin{gathered} 34.4(35.6) \\ 2,10,23,47,105 \end{gathered}$ | $\begin{gathered} 16.3(8.1) \\ 6,11,15,21,31 \end{gathered}$ | $\begin{gathered} 16.2(17.0) \\ 2,5,11,22,49 \end{gathered}$ | $\begin{gathered} 22.0(23.3) \\ 2,6,15,30,68 \end{gathered}$ |
| 0.25 | $\begin{gathered} \hline 31.5(32.8) \\ 2,9,21,42,96 \\ \hline \end{gathered}$ | $\begin{gathered} 22.2(23.0) \\ 2,6,15,30,67 \\ \hline \end{gathered}$ | $\begin{gathered} 20.3(9.2) \\ 9,14,19,25,38 \end{gathered}$ | $\begin{gathered} 22.2(22.6) \\ 2,7,15,30,66 \\ \hline \end{gathered}$ | $\begin{gathered} 29.6(30.7) \\ 2,9,20,40,90 \\ \hline \end{gathered}$ | $\begin{gathered} 15.1(7.5) \\ 5,10,14,19,29 \end{gathered}$ | $\begin{gathered} 14.5(15.3) \\ 2,4,10,19,45 \\ \hline \end{gathered}$ | $\begin{gathered} 19.7(21.2) \\ 2,5,13,27,62 \\ \hline \end{gathered}$ |
| 0.5 | $\begin{gathered} 21.8(22.5) \\ 2,6,15,30,66 \end{gathered}$ | $\begin{gathered} 16.98(17.7) \\ 1,5,11,23,51 \end{gathered}$ | $\begin{gathered} 16.0(6.96) \\ 7,11,15,20,29 \end{gathered}$ | $\begin{gathered} 14.9(15.1) \\ 2,5,10,20,44 \end{gathered}$ | $\begin{gathered} 20.5(21.5) \\ 2,6,14,28,62 \end{gathered}$ | $\begin{gathered} 12.5(6.0) \\ 4,8,12,16,23 \end{gathered}$ | $\begin{gathered} 10.8(11.2) \\ 1,3,7,14,32 \end{gathered}$ | $\begin{gathered} 14.9(15.96) \\ 1,4,10,20,46 \end{gathered}$ |
| 0.75 | $\begin{gathered} 13.6(14.0) \\ 1,4,9,18,41 \\ \hline \end{gathered}$ | $\begin{gathered} 11.5(11.8) \\ 1,3,8,15,35 \\ \hline \end{gathered}$ | $\begin{gathered} 12.0(4.9) \\ 5,9,11,15,21 \\ \hline \end{gathered}$ | $\begin{gathered} 9.2(8.8) \\ 1,3,7,12,26 \end{gathered}$ | $\begin{gathered} 12.6(12.8) \\ 1,4,9,17,38 \\ \hline \end{gathered}$ | $\begin{gathered} 9.8(4.5) \\ 3,7,9,12,18 \\ \hline \end{gathered}$ | $\begin{gathered} 7.2(7.0) \\ 1,2,5,10,21 \end{gathered}$ | $\begin{gathered} 9.9(10.3) \\ 1,3,7,13,30 \\ \hline \end{gathered}$ |
| 1.0 | $\begin{gathered} 8.4(8.3) \\ 1,3,6,11,25 \end{gathered}$ | $\begin{gathered} 7.6(7.6) \\ 1,2,5,10,22 \end{gathered}$ | $\begin{gathered} 9.1(3.5) \\ 4,7,9,11,16 \end{gathered}$ | $\begin{gathered} 5.9(5.1) \\ 1,2,4,8,16 \end{gathered}$ | $\begin{gathered} 7.8(7.7) \\ 1,3,5,10,23 \end{gathered}$ | $\begin{gathered} 7.6(3.4) \\ 3,5,7,10,14 \end{gathered}$ | $\begin{gathered} 4.9(4.3) \\ 1,2,4,6,13 \end{gathered}$ | $\begin{gathered} 6.5(6.5) \\ 1,2,4,9,19 \end{gathered}$ |
| 1.5 | $\begin{gathered} 3.8(3.4) \\ 1,1,3,5,10 \end{gathered}$ | $\begin{gathered} 3.5(3.2) \\ 1,1,3,5,10 \end{gathered}$ | $\begin{gathered} 5.7(2.0) \\ 3,4,5,7,9 \end{gathered}$ | $\begin{gathered} 2.9(2.0) \\ 1,1,2,4,7 \end{gathered}$ | $\begin{gathered} 3.5(2.9) \\ 1,1,3,4,9 \end{gathered}$ | $\begin{gathered} 4.9(2.1) \\ 2,3,5,6,9 \end{gathered}$ | $\begin{gathered} 2.7(1.9) \\ 1,1,2,3,6 \end{gathered}$ | $\begin{gathered} 3.0(2.5) \\ 1,1,2,4,8 \end{gathered}$ |
| 2 | $\begin{gathered} 2.2(1.6) \\ 1,1,2,3,5 \end{gathered}$ | $\begin{gathered} 2.0(1.5) \\ 1,1,2,3,5 \end{gathered}$ | $\begin{gathered} 4.1(1.3) \\ 2,3,4,5,6 \end{gathered}$ | $\begin{gathered} 1.9(1.1) \\ 1,1,2,2,4 \end{gathered}$ | $\begin{gathered} 2.1(1.4) \\ 1,1,2,3,5 \end{gathered}$ | $\begin{gathered} 3.6(1.4) \\ 2,2,3,4,6 \end{gathered}$ | $\begin{gathered} 1.8(1.0) \\ 1,1,2,2,4 \end{gathered}$ | $\begin{gathered} 1.9(1.2) \\ 1,1,2,2,4 \end{gathered}$ |
| 3 | $\begin{gathered} 1.3(0.6) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.2(0.5) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 2.7(0.7) \\ 2,2,3,3,4 \end{gathered}$ | $\begin{gathered} 1.3(0.5) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.3(0.5) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 2.4(0.8) \\ 2,2,2,3,4 \end{gathered}$ | $\begin{gathered} 1.2(0.5) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.2(0.5) \\ 1,1,1,1,2 \end{gathered}$ |
| $\delta=2.00$ |  |  |  |  |  |  |  |  |
| 0 | $\begin{gathered} 23.2(23.5) \\ 2,7,16,32,69 \end{gathered}$ | $\begin{gathered} 15.0(15.3) \\ 1,5,10,20,45 \end{gathered}$ | $\begin{gathered} 16.3(6.8) \\ 7,11,15,20,29 \end{gathered}$ | $\begin{gathered} 15.5(15.2) \\ 2,5,11,21,45 \end{gathered}$ | $\begin{gathered} 21.5(21.9) \\ 2,6,15,29,64 \\ \hline \end{gathered}$ | $\begin{gathered} 11.8(5.5) \\ 4,8,11,15,22 \end{gathered}$ | $\begin{gathered} 9.5(9.4) \\ 1,3,7,13,28 \end{gathered}$ | $\begin{gathered} 13.0(13.7) \\ 1,4,9,18,40 \end{gathered}$ |
| 0.25 | $\begin{gathered} 20.6(21.1) \\ 2,6,14,28,61 \end{gathered}$ | $\begin{gathered} 13.9(14.2) \\ 1,4,9,19,41 \end{gathered}$ | $\begin{gathered} 15.3(6.3) \\ 7,11,14,19,27 \end{gathered}$ | $\begin{gathered} 13.9(13.6) \\ 2,5,10,19,40 \end{gathered}$ | $\begin{gathered} 19.1(19.4) \\ 2,6,13,26,57 \\ \hline \end{gathered}$ | $\begin{gathered} 11.2(5.2) \\ 4,8,11,14,21 \\ \hline \end{gathered}$ | $\begin{gathered} 8.9(8.7) \\ 1,3,6,12,26 \end{gathered}$ | $\begin{gathered} 12.1(12.6) \\ 1,3,8,16,37 \end{gathered}$ |
| 0.5 | $\begin{gathered} 15.7(15.9) \\ 1,5,11,21,47 \end{gathered}$ | $\begin{gathered} 11.4(11.5) \\ 1,4,8,15,34 \end{gathered}$ | $\begin{gathered} 12.9(5.3) \\ 6,9,12,16,23 \end{gathered}$ | $\begin{gathered} 10.6(10.1) \\ 1,4,7,14,30 \end{gathered}$ | $\begin{gathered} 14.5(14.6) \\ 1,4,10,20,43 \\ \hline \end{gathered}$ | $\begin{gathered} 9.9(4.6) \\ 3,7,9,12,18 \end{gathered}$ | $\begin{gathered} 7.2(6.8) \\ 1,2,5,10,20 \end{gathered}$ | $\begin{gathered} 9.8(10.1) \\ 1,3,7,13,30 \end{gathered}$ |
| 0.75 | $\begin{gathered} 11.0(11.1) \\ 1,3,8,15,33 \end{gathered}$ | $\begin{gathered} 8.5(8.5) \\ 1,3,6,11,25 \end{gathered}$ | $\begin{gathered} 10.5(4.1) \\ 5,8,10,13,18 \\ \hline \end{gathered}$ | $\begin{gathered} 7.4(6.6) \\ 1,3,5,10,20 \end{gathered}$ | $\begin{gathered} 10.0(9.9) \\ 1,3,7,13,30 \end{gathered}$ | $\begin{gathered} 8.3(3.7) \\ 3,6,8,10,15 \end{gathered}$ | $\begin{gathered} 5.5(4.9) \\ 1,2,4,7,15 \end{gathered}$ | $\begin{gathered} 7.3(7.3) \\ 1,2,5,10,22 \end{gathered}$ |
| 1.0 | $\begin{gathered} 7.5(7.3) \\ 1,2,5,10,22 \end{gathered}$ | $\begin{gathered} 6.2(5.95) \\ 1,2,4,8,18 \\ \hline \end{gathered}$ | $\begin{gathered} 8.4(3.2) \\ 4,6,8,10,14 \end{gathered}$ | $\begin{gathered} 5.2(4.3) \\ 1,2,4,7,14 \\ \hline \end{gathered}$ | $\begin{gathered} 6.8(6.4) \\ 1,2,5,9,19 \end{gathered}$ | $\begin{gathered} 6.8(3.0) \\ 2,5,6,9,12 \end{gathered}$ | $\begin{gathered} 4.1(3.4) \\ 1,2,3,5,11 \end{gathered}$ | $\begin{gathered} 5.2(4.98) \\ 1,2,4,7,15 \\ \hline \end{gathered}$ |
| 1.5 | $\begin{gathered} 3.7(3.3) \\ 1,1,3,5,10 \end{gathered}$ | $\begin{gathered} 3.3(2.9) \\ 1,1,2,4,9 \end{gathered}$ | $\begin{gathered} 5.7(1.98) \\ 3,4,5,7,9 \end{gathered}$ | $\begin{gathered} 2.9(2.0) \\ 1,1,2,4,7 \end{gathered}$ | $\begin{gathered} 3.4(2.9) \\ 1,1,3,4,9 \end{gathered}$ | $\begin{gathered} 4.8(2.0) \\ 2,3,5,6,8 \end{gathered}$ | $\begin{gathered} 2.5(1.7) \\ 1,1,2,3,6 \\ \hline \end{gathered}$ | $\begin{gathered} 2.9(2.4) \\ 1,1,2,4,8 \end{gathered}$ |


| 2 | $\begin{gathered} 2.3(1.7) \\ 1,1,2,3,6 \end{gathered}$ | $\begin{gathered} 2.1(1.6) \\ 1,1,2,3,5 \end{gathered}$ | $\begin{gathered} 4.2(1.4) \\ 2,3,4,5,7 \\ \hline \end{gathered}$ | $\begin{gathered} \hline 2.0(1.2) \\ 1,1,2,2,4 \end{gathered}$ | $\begin{gathered} \hline 2.1(1.5) \\ 1,1,2,3,5 \end{gathered}$ | $\begin{gathered} 3.6(1.4) \\ 2,2,3,4,6 \end{gathered}$ | $\begin{gathered} 1.8(1.0) \\ 1,1,2,2,4 \\ \hline \end{gathered}$ | $\begin{gathered} \hline 1.9(1.3) \\ 1,1,2,2,4 \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | $\begin{gathered} 1.3(0.7) \\ 1,1,1,2,3 \end{gathered}$ | $\begin{gathered} 1.3(0.6) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 2.9(0.8) \\ 2,2,3,3,4 \end{gathered}$ | $\begin{gathered} 1.3(0.6) \\ 1,1,1,2,2 \end{gathered}$ | $\begin{gathered} 1.3(0.6) \\ 1,1,1,2,3 \end{gathered}$ | $\begin{gathered} 2.5(0.8) \\ 2,2,2,3,4 \end{gathered}$ | $\begin{gathered} 1.3(0.5) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.2(0.5) \\ 1,1,1,1,2 \end{gathered}$ |

** indicates variance estimate is not meaningful and \# indicates the percentile value exceeds 5000 .
Table-7. Performance comparisons for $m=100, n=5$ between various competetive charts for the Exponential $(\theta, \delta)$ distribution with ARL $_{0}=500$.

| $\theta$ | Shewhart Lepage Chart | Shewhart Cucconi Chart | CUSUM Lepage chart |  |  | CUSUM Cucconi chart |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $k=0$ | $k=3$ | $k=6$ | $k=0$ | $k=1.5$ | $k=3.0$ |
| $\delta=0.50$ |  |  |  |  |  |  |  |  |
| 0 | $\begin{gathered} 129.0(253.0) \\ 4,20,54,137,483 \\ \hline \end{gathered}$ | $\begin{gathered} 131.5(274.7) \\ 4,19,53,135,488 \\ \hline \end{gathered}$ | $\begin{gathered} 28.5(34.8) \\ 915,22,33,64 \\ \hline \end{gathered}$ | $\begin{gathered} 104.2(215.9) \\ 3,15,42,107,391 \\ \hline \end{gathered}$ | $\begin{gathered} 124.3(242.3) \\ 4,19,53,132,462 \\ \hline \end{gathered}$ | $\begin{gathered} 27.9(34.2) \\ 7,14,21,33,65 \\ \hline \end{gathered}$ | $\begin{gathered} 118.3(276.2) \\ 2,14,41,113,460 \\ \hline \end{gathered}$ | $\begin{gathered} 133.6(284.3) \\ 3,18,52,136,501 \\ \hline \end{gathered}$ |
| 0.25 | $\begin{gathered} >29000^{(* *)} \\ 111,849,3062, \#, \# \end{gathered}$ | $\begin{aligned} & >4900(* *) \\ & \#, \#, \#, \#, \# \end{aligned}$ | $\begin{gathered} 85.2(397.6) \\ 11,18,28,48,161 \end{gathered}$ | $\begin{gathered} >17000^{(* *)} \\ 19,162,776,3571, \# \end{gathered}$ | $\begin{gathered} >28000^{(* *)} \\ 99,784,2922, \#, \# \end{gathered}$ | $\begin{gathered} 56.7(235.1) \\ 15,22,30,45,109 \\ \hline \end{gathered}$ | $>4900(* *)$ <br> \#, \#, \#, \#, \# | $\begin{aligned} & >4900(\text { (**) } \\ & \#, \#, \#, \#, \# \end{aligned}$ |
| 0.5 | $\begin{gathered} 909.3(1360.3) \\ 13,90,307,1015, \# \end{gathered}$ | >4700 (**) <br> 2021, \#, \#, \#, \# | $\begin{gathered} 12.5(5.4) \\ 7,9,12,15,21 \end{gathered}$ | $\begin{gathered} 155.9(485.4) \\ 4,11,31,97,626 \end{gathered}$ | $\begin{gathered} >700(* *) \\ 10,68,235,796,4930 \end{gathered}$ | $\begin{gathered} 15.9(4.6) \\ 10,13,15,18,24 \\ \hline \end{gathered}$ | $\begin{gathered} >4600(* *) \\ 1629, \#, \#, \#, \# \end{gathered}$ | $>4700$ (**) <br> 2007, \#, \#, \#, \# |
| 0.75 | $\begin{gathered} >1800(* *) \\ 23,206,892,3961, \# \end{gathered}$ | $\begin{gathered} >3600(* *) \\ 168,1922, \#, \#, \# \\ \hline \end{gathered}$ | $\begin{gathered} 14.0(3.4) \\ 8,12,14,16,19 \\ \hline \end{gathered}$ | $\begin{gathered} >1200(* *) \\ 7,47,274,1563, \# \end{gathered}$ | $\begin{gathered} >1800(* *) \\ 20,184,836,3766, \# \\ \hline \end{gathered}$ | $\begin{gathered} 13.4(2.2) \\ 10,12,13,15,17 \\ \hline \end{gathered}$ | $\begin{gathered} >3500(* *) \\ 89,1538, \#, \# \end{gathered}$ | $\begin{gathered} >3700(* *) \\ 168,2006, \#, \#, \# \\ \hline \end{gathered}$ |
| 1.0 | $\begin{gathered} >1200(* *) \\ 7,70,335,1652, \# \end{gathered}$ | $\begin{gathered} >1900(* *) \\ 16,174,901,4910, \# \end{gathered}$ | $\begin{gathered} 12.7(4.3) \\ 6,9,13,16,20 \end{gathered}$ | $\begin{gathered} >900(* *) \\ 3,16,114,919, \# \end{gathered}$ | $\begin{gathered} >1200(* *) \\ 6,64,328,1670, \text { \# } \end{gathered}$ | $\begin{gathered} 10.6(2.6) \\ 6,9,11,13,14 \end{gathered}$ | $\begin{gathered} >1500(* *) \\ 4,28,310,3318, \# \end{gathered}$ | $\begin{gathered} >1900(* *) \\ 12,161,891, \#, \# \end{gathered}$ |
| 1.5 | $\begin{gathered} 50.8(291.1) \\ 1,1,4,16,154 \end{gathered}$ | $\begin{gathered} 141.9(567.4) \\ 1,3,10,48,556 \\ \hline \end{gathered}$ | $\begin{gathered} 4.6(1.8) \\ 3,3,4,5,8 \\ \hline \end{gathered}$ | $\begin{aligned} & 11.1(147.1) \\ & 1,2,2,3,10 \\ & \hline \end{aligned}$ | $\begin{aligned} & 41.1(261.3) \\ & 1,1,3,9,119 \\ & \hline \end{aligned}$ | $\begin{gathered} 4.8(1.8) \\ 2,3,4,6,8 \\ \hline \end{gathered}$ | $\begin{aligned} & 22.1(237.2) \\ & 1,2,3,5,18 \end{aligned}$ | $\begin{gathered} 126.4(557.7) \\ 1,2,5,26,485 \\ \hline \end{gathered}$ |
| 2 | $\begin{aligned} & 1.8(10.0) \\ & 1,1,1,1,4 \end{aligned}$ | $\begin{gathered} 4.3(55.0) \\ 1,1,1,2,9 \end{gathered}$ | $\begin{gathered} 2.6(0.7) \\ 2,2,3,3,4 \end{gathered}$ | $\begin{gathered} 1.2(0.5) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.5(24.3) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 2.7(0.8) \\ 2,2,2,3,4 \end{gathered}$ | $\begin{gathered} 1.4(2.0) \\ 1,1,1,2,3 \end{gathered}$ | $\begin{gathered} 2.5(30.0) \\ 1,1,1,2,4 \end{gathered}$ |
| 3 | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1, \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 2.0(0.10 \\ 2,2,2,2,2 \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.7(0.5) \\ 1,1,2,2,2 \\ \hline \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \\ \hline \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ |

$\delta=1.00$

| 0 | $\begin{gathered} 516.5(686.7) \\ 19,106,281,640,1824 \end{gathered}$ | $\begin{gathered} 486.0(696.3) \\ 16,91,245,583, \\ 1778 \end{gathered}$ | $\begin{gathered} 495.3(848.1) \\ 35,88,195,486,2063 \end{gathered}$ | $\begin{gathered} 506.8(777.3) \\ 23,89,208,535, \\ 2179 \end{gathered}$ | $\begin{gathered} 510(710.3) \\ 21,84,218,555,2231 \\ \hline \end{gathered}$ | $\begin{gathered} 506.7(890.7) \\ 27,75,181,490,2249 \end{gathered}$ | $\begin{gathered} 508.4(757.4) \\ 13,87,242,593,1940 \end{gathered}$ | $\begin{gathered} 499.2(720.1) \\ 15,92,248,592,1866 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.25 | $\begin{gathered} 470.8(733.8) \\ 13,75,210,536,1835 \end{gathered}$ | $\begin{gathered} 670.1(1023.2) \\ 15,94,275,746, \\ 2960 \end{gathered}$ | $\begin{gathered} 124.2(420.9) \\ 16,28,44,79,342 \\ \hline \end{gathered}$ | $\begin{gathered} 401.8(646.1) \\ 11,62,180,451,1543 \\ \hline \end{gathered}$ | $\begin{gathered} 467.6(734.5) \\ 12,75,209,529,1810 \\ \hline \end{gathered}$ | $\begin{gathered} 128.3(422.1) \\ 16,29,47,83,356 \end{gathered}$ | $\begin{gathered} 692.4(1073.0) \\ 12,87,268,760,3230 \end{gathered}$ | $\begin{gathered} 679.8(1039.9) \\ 14,92,276,757,3053 \end{gathered}$ |
| 0.5 | $\begin{gathered} 149.4(278.3) \\ 4,23,65,163,557 \\ \hline \end{gathered}$ | $\begin{gathered} 232.9(474.5) \\ 5,30,86,231,912 \\ \hline \end{gathered}$ | $\begin{gathered} 15.8(7.6) \\ 8,12,15,18,27 \end{gathered}$ | $\begin{gathered} 95.9(176.4) \\ 3,15,42,105,359 \\ \hline \end{gathered}$ | $142.8(261.8)$ $4,22,62,156,538$ | $\begin{gathered} 16.6(7.6) \\ 7,12,15,20,30 \end{gathered}$ | $\begin{gathered} 206.2(467.3) \\ 3,20,64,188,846 \\ \hline \end{gathered}$ | $\begin{gathered} 233.5(485.7) \\ 4,28,83,227,926 \end{gathered}$ |
| 0.75 | $\begin{gathered} 48.5(95.2) \\ 2,720,52,184 \end{gathered}$ | $\begin{gathered} 73.3(173.1) \\ 2,10,27,71,278 \end{gathered}$ | $\begin{gathered} 9.6(3.3) \\ 5,7,912,15 \end{gathered}$ | $\begin{gathered} 27.1(55.5) \\ 2,5,10,27,104 \end{gathered}$ | $\begin{gathered} 45.6(92.7) \\ 2,7,18,47,175 \end{gathered}$ | $\begin{array}{r} 9.3(3.6) \\ 4,7,9,12,16 \\ \hline \end{array}$ | $\begin{gathered} 44.4(148.5) \\ 2,5,12,34,168 \\ \hline \end{gathered}$ | $\begin{gathered} 68.6(167.1) \\ 2,8,24,66,264 \\ \hline \end{gathered}$ |
| 1.0 | $\begin{gathered} 15.3(35.1) \\ 1,2,6,16,56 \end{gathered}$ | $\begin{gathered} 22.6(52.4) \\ 1,3,9,22,85 \end{gathered}$ | $\begin{gathered} 6.2(2.5) \\ 3,4,6,8,11 \end{gathered}$ | $\begin{gathered} 6.9(16.2) \\ 1,2,3,6,21 \end{gathered}$ | $\begin{gathered} 13.5(31.3) \\ 1,2,5,13,50 \end{gathered}$ | $\begin{gathered} 6.0(2.4) \\ 3,4,6,7,10 \end{gathered}$ | $\begin{gathered} 8.9(28.9) \\ 1,2,4,8,27 \end{gathered}$ | $\begin{gathered} 19.8(47.7) \\ 1,2,7,18,75 \end{gathered}$ |
| 1.5 | $\begin{gathered} 2.1(4.2) \\ 1,1,1,2,6 \end{gathered}$ | $\begin{gathered} 3.1(6.5) \\ 1,1,1,3,10 \end{gathered}$ | $\begin{gathered} 3.1(0.9) \\ 2,3,3,4,5 \end{gathered}$ | $\begin{gathered} 1.5(0.8) \\ 1,1,1,2,3 \end{gathered}$ | $\begin{gathered} 1.8(2.3) \\ 1,1,1,2,4 \end{gathered}$ | $\begin{gathered} 3.1(1.1) \\ 2,2,3,4,5 \end{gathered}$ | $\begin{gathered} 1.8(2.3) \\ 1,1,2,2,4 \end{gathered}$ | $\begin{gathered} 2.4(3.9) \\ 1,1,1,2,6 \end{gathered}$ |
| 2 | $\begin{gathered} 1.0(0.3) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.1(0.7) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 2.2(0.4) \\ 2,2,2,2,3 \end{gathered}$ | $\begin{gathered} 1.0(0.2) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.2) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 2.2(0.5) \\ 2,2,2,2,3 \end{gathered}$ | $\begin{gathered} 1.1(0.3) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.1(0.4) \\ 1,1,1,1,2 \end{gathered}$ |
| 3 | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 2.0(0.02) \\ 2,2,2,2,2 \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.5(0.5) \\ 1,1,1,2,2 \end{gathered}$ | $\begin{gathered} 1.0(0.01) \\ 1,1,1,1,1 \\ \hline \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ |
| $\delta=1.25$ |  |  |  |  |  |  |  |  |


| 0 | $\begin{gathered} 184.9(265.4) \\ 7,37,97,224,652 \end{gathered}$ | $\begin{gathered} 176.6(270.7) \\ 6,34,90,211,618 \end{gathered}$ | $\begin{gathered} 129.2(252.6) \\ 17,37,66,128,416 \end{gathered}$ | $\begin{gathered} 169.7(249.6) \\ 6,33,88,205,604 \end{gathered}$ | $\begin{gathered} 184.2(271.6) \\ 7,37,97,223,639 \\ \hline \end{gathered}$ | $\begin{gathered} 115.5(245.3) \\ 13,30,55,111,374 \end{gathered}$ | $\begin{gathered} 168.1(278.3) \\ 4,29,80,193,617 \\ \hline \end{gathered}$ | $\begin{gathered} 176.5(270.1) \\ 5,33,89,210,627 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.25 | $\begin{gathered} 102.4(166.4) \\ 4,20,51,119,366 \\ \hline \end{gathered}$ | $\begin{gathered} 121.1(207.8) \\ 4,21,57,137,442 \\ \hline \end{gathered}$ | $\begin{gathered} 34.8(52.5) \\ 10,17,25,39,83 \\ \hline \end{gathered}$ | $\begin{gathered} 88.1(150.6) \\ 3,16,43,101,313 \\ \hline \end{gathered}$ | $\begin{gathered} 100.3(166.0) \\ 4,19,49,117,356 \\ \hline \end{gathered}$ | $\begin{gathered} 34.2(54.5) \\ 8,16,25,38,82 \end{gathered}$ | $\begin{gathered} 111.7(212.4) \\ 2,17,48,121,416 \end{gathered}$ | $\begin{gathered} 122.0(223.6) \\ 3,20,55,136,446 \end{gathered}$ |
| 0.5 | $\begin{gathered} 40.8(68.0) \\ 2,8,20,47,144 \end{gathered}$ | $\begin{gathered} 48.8(87.2) \\ 2,9,23,54,175 \end{gathered}$ | $\begin{gathered} 12.1(5.3) \\ 5,9,11,15,21 \end{gathered}$ | $\begin{gathered} 27.8(45.5) \\ 2,6,14,31,98 \end{gathered}$ | $\begin{gathered} 38.7(63.0) \\ 2,7,19,45,138 \end{gathered}$ | $\begin{gathered} 11.9(5.8) \\ 4,8,11,15,22 \end{gathered}$ | $\begin{gathered} 35.1(77.4) \\ 2,6,15,37,130 \end{gathered}$ | $\begin{gathered} 47.0(87.5) \\ 2,8,21,52,172 \end{gathered}$ |
| 0.75 | $\begin{gathered} 15.6(25.5) \\ 1,3,8,18,55 \end{gathered}$ | $\begin{gathered} 19.1(37.3) \\ 1,4,9,22,68 \end{gathered}$ | $\begin{gathered} 7.4(2.8) \\ 4,5,7,9,13 \end{gathered}$ | $\begin{gathered} 8.9(13.8) \\ 1,3,5,10,29 \end{gathered}$ | $\begin{gathered} 14.7(24.9) \\ 1,3,7,17,52 \end{gathered}$ | $\begin{gathered} 7.0(3.0) \\ 3,5,7,9,13 \end{gathered}$ | $\begin{gathered} 10.4(24.3) \\ 1,2,5,11,34 \end{gathered}$ | $\begin{gathered} 17.5(33.6) \\ 1,3,8,19,63 \end{gathered}$ |
| 1.0 | $\begin{gathered} 6.1(10.3) \\ 1,2,3,7,20 \end{gathered}$ | $\begin{gathered} 8.0(13.5) \\ 1,2,4,9,28 \end{gathered}$ | $\begin{gathered} 4.9(1.9) \\ 3,4,5,6,8 \end{gathered}$ | $\begin{gathered} 3.4(4.1) \\ 1,2,2,4,9 \end{gathered}$ | $\begin{gathered} 5.4(8.6) \\ 1,2,3,6,18 \end{gathered}$ | $\begin{gathered} 4.8(1.9) \\ 2,3,5,6,8 \end{gathered}$ | $\begin{gathered} 3.9(5.8) \\ 1,2,3,5,10 \end{gathered}$ | $\begin{gathered} 6.7(11.6) \\ 1,2,3,7,23 \end{gathered}$ |
| 1.5 | $\begin{gathered} 1.5(1.4) \\ 1,1,1,2,4 \end{gathered}$ | $\begin{gathered} 1.9(2.2) \\ 1,1,1,2,5 \end{gathered}$ | $\begin{gathered} 2.8(0.8) \\ 2,2,3,3,4 \end{gathered}$ | $\begin{gathered} 1.3(0.6) \\ 1,1,1,2,2 \end{gathered}$ | $\begin{gathered} 1.4(1.1) \\ 1,1,1,2,3 \end{gathered}$ | $\begin{gathered} 2.8(0.9) \\ 2,2,3,3,4 \end{gathered}$ | $\begin{gathered} 1.5(0.8) \\ 1,1,1,2,3 \end{gathered}$ | $\begin{gathered} 1.7(1.5) \\ 1,1,1,2,4 \end{gathered}$ |
| 2 | $\begin{gathered} 1.0(0.2) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.1(0.4) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 2.1(0.3) \\ 2,2,2,2,3 \end{gathered}$ | $\begin{gathered} 1.0(0.1) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.2) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 2.1(0.5) \\ 1,2,2,2,3 \end{gathered}$ | $\begin{gathered} 1.1(0.2) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.1(0.3) \\ 1,1,1,1,2 \end{gathered}$ |
| 3 | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 2.0(0.01) \\ 2,2,2,2,2 \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.4(0.5) \\ 1,1,1,2,2 \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ |
| $\delta=1.50$ |  |  |  |  |  |  |  |  |
| 0 | $\begin{gathered} 63.4(86.2) \\ 3,14,36,79,213 \end{gathered}$ | $\begin{gathered} 61.4(86.3) \\ 3,13,34,75,210 \end{gathered}$ | $\begin{gathered} 39.1(42.1) \\ 10,1829,46,99 \\ \hline \end{gathered}$ | $\begin{gathered} 55.7(81.1) \\ 3,12,30,67,189 \end{gathered}$ | $\begin{gathered} 63.0(86.3) \\ 314,35,78,214 \end{gathered}$ | $\begin{gathered} 33.0(41.8) \\ 7,15,24,39,85 \\ \hline \end{gathered}$ | $\begin{gathered} \hline 52.7(81.5) \\ 2,10,27,63,186 \end{gathered}$ | $\begin{gathered} 60.3(88.1) \\ 2,12,32,73,210 \\ \hline \end{gathered}$ |
| 0.25 | $\begin{gathered} 35.8(50.7) \\ 2,8,20,44,121 \\ \hline \end{gathered}$ | $\begin{gathered} 38.5(56.2) \\ 2,9,21,47,132 \end{gathered}$ | $\begin{gathered} 18.4(11.9) \\ 6,11,16,23,40 \end{gathered}$ | $\begin{gathered} 28.6(41.0) \\ 2,7,16,34,97 \end{gathered}$ | $\begin{gathered} 34.6(48.2) \\ 2,8,19,42,118 \end{gathered}$ | $\begin{gathered} 17.3(12.0) \\ 5,10,15,22,38 \end{gathered}$ | $\begin{gathered} 31.4(51.1) \\ 2,6,16,37,112 \end{gathered}$ | $\begin{gathered} 37.3(56.1) \\ 2,8,20,45,129 \end{gathered}$ |
| 0.5 | $\begin{gathered} 16.7(22.7) \\ 1,4,9,21,56 \end{gathered}$ | $\begin{gathered} 18.2(25.7) \\ 1,4,10,22,61 \\ \hline \end{gathered}$ | $\begin{gathered} 9.3(4.1) \\ 4,6,9,11,17 \\ \hline \end{gathered}$ | $\begin{gathered} 11.5(15.2) \\ 1,3,7,14,37 \end{gathered}$ | $\begin{gathered} 15.7(21.5) \\ 1,4,9,19,53 \end{gathered}$ | $\begin{gathered} 8.8(4.3) \\ 3,6,8,11,16 \\ \hline \end{gathered}$ | $\begin{gathered} 12.1(18.5) \\ 1,3,7,14,40 \end{gathered}$ | $\begin{gathered} 17.0(25.7) \\ 1,3,9,21,58 \end{gathered}$ |
| 0.75 | $\begin{gathered} 7.7(10.3) \\ 1,2,4,9,25 \\ \hline \end{gathered}$ | $\begin{gathered} 8.8(12.0) \\ 1,2,5,11,29 \end{gathered}$ | $\begin{gathered} 6.0(2.3) \\ 3,4,6,7,10 \\ \hline \end{gathered}$ | $\begin{gathered} 4.8(5.4) \\ 1,2,3,6,14 \\ \hline \end{gathered}$ | $\begin{gathered} 7.0(9.4) \\ 1,2,4,8,23 \end{gathered}$ | $\begin{gathered} 5.6(2.5) \\ 2,4,5,7,10 \\ \hline \end{gathered}$ | $\begin{gathered} 5.0(6.0) \\ 1,2,3,6,14 \end{gathered}$ | $\begin{gathered} 7.7(11.3) \\ 1,2,4,9,26 \\ \hline \end{gathered}$ |
| 1.0 | $\begin{gathered} 3.6(4.5) \\ 1,1,2,4,11 \\ \hline \end{gathered}$ | $\begin{gathered} 4.4(5.6) \\ 1,1,3,5,14 \\ \hline \end{gathered}$ | $\begin{gathered} 4.2(1.5) \\ 2,3,4,5,7 \end{gathered}$ | $\begin{gathered} 2.4(1.9) \\ 1,1,2,3,6 \end{gathered}$ | $\begin{gathered} 3.2(3.8) \\ 1,1,2,4,10 \\ \hline \end{gathered}$ | $\begin{gathered} 4.0(1.6) \\ 2,3,4,5,7 \\ \hline \end{gathered}$ | $\begin{gathered} 2.7(2.2) \\ 1,1,2,3,6 \end{gathered}$ | $\begin{gathered} 3.6(4.5) \\ 1,1,2,4,11 \\ \hline \end{gathered}$ |
| 1.5 | $\begin{gathered} 1.3(0.8) \\ 1,1,1,1,3 \end{gathered}$ | $\begin{gathered} 1.5(1.3) \\ 1,1,1,2,4 \end{gathered}$ | $\begin{gathered} 2.6(0.7) \\ 2,2,2,3,4 \\ \hline \end{gathered}$ | $\begin{gathered} 1.2(0.5) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.2(0.7) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 2.5(0.8) \\ 2,2,2,3,4 \\ \hline \end{gathered}$ | $\begin{gathered} 1.3(0.6) \\ 1,1,1,2,2 \end{gathered}$ | $\begin{gathered} 1.4(0.9) \\ 1,1,1,2,3 \end{gathered}$ |
| 2 | $\begin{gathered} 1.0(0.1) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.2) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 2.1(0.3) \\ 2,2,2,2,3 \end{gathered}$ | $\begin{gathered} 1.0(0.1) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.1) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 2.0(0.5) \\ 1,2,2,2,3 \end{gathered}$ | $\begin{gathered} 1.0(0.2) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.2) \\ 1,1,1,1,1 \end{gathered}$ |
| 3 | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \\ \hline \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \\ \hline \end{gathered}$ | $\begin{gathered} 2.0(0.0) \\ 2,2,2,2,2 \\ \hline \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \\ \hline \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \\ \hline \end{gathered}$ | $\begin{gathered} 1.3(0.5) \\ 1,1,1,2,2 \\ \hline \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \\ \hline \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \\ \hline \end{gathered}$ |
| $\delta=1.75$ |  |  |  |  |  |  |  |  |
| 0 | $\begin{gathered} 28.6(36.3) \\ 2,7,17,36,93 \end{gathered}$ | $\begin{gathered} 27.1(34.8) \\ 2,7,16,34,89 \\ \hline \end{gathered}$ | $\begin{gathered} 20.2(13.7) \\ 6,11,17,25,45 \end{gathered}$ | $\begin{gathered} 23.5(30.1) \\ 2,6,14,30,77 \end{gathered}$ | $\begin{gathered} 28.0(34.7) \\ 2,7,17,36,92 \\ \hline \end{gathered}$ | $\begin{gathered} 17.0(12.2) \\ 4,9,14,21,39 \\ \hline \end{gathered}$ | $\begin{gathered} 21.5(29.1) \\ 2,5,12,27,73 \\ \hline \end{gathered}$ | $\begin{gathered} 26.0(35.2) \\ 2,6,15,33,87 \\ \hline \end{gathered}$ |
| 0.25 | $\begin{gathered} 17.3(21.4) \\ 1,4,10,22,56 \end{gathered}$ | $\begin{gathered} \hline 17.9(22.8) \\ 1,4,11,23,58 \\ \hline \end{gathered}$ | $\begin{gathered} 12.4(6.8) \\ 5,8,11,15,25 \\ \hline \end{gathered}$ | $\begin{gathered} 13.4(16.9) \\ 1,4,8,17,43 \end{gathered}$ | $\begin{gathered} \hline 16.5(20.7) \\ 1,4,10,21,54 \\ \hline \end{gathered}$ | $\begin{gathered} 11.4(6.8) \\ 3,7,10,14,24 \\ \hline \end{gathered}$ | $\begin{gathered} 13.1(17.5) \\ 1,3,8,16,43 \end{gathered}$ | $\begin{gathered} \hline 17.0(22.8) \\ 1,4,10,21,56 \end{gathered}$ |
| 0.5 | $\begin{gathered} 9.3(11.3) \\ 1,3,6,12,30 \end{gathered}$ | $\begin{gathered} 9.7(12.3) \\ 1,3,6,12,31 \end{gathered}$ | $\begin{gathered} 7.4(3.1) \\ 3,5,7,9,13 \end{gathered}$ | $\begin{gathered} 6.5(7.1) \\ 1,2,4,8,19 \end{gathered}$ | $\begin{gathered} 8.8(10.6) \\ 1,2,5,11,28 \end{gathered}$ | $\begin{gathered} 6.8(3.3) \\ 2,4,6,9,13 \end{gathered}$ | $\begin{gathered} 6.4(7.7) \\ 1,2,4,8,19 \end{gathered}$ | $\begin{gathered} 8.7(11.1) \\ 1,2,5,11,29 \end{gathered}$ |
| 0.75 | $\begin{gathered} 4.8(5.5) \\ 1,1,3,6,15 \\ \hline \end{gathered}$ | $\begin{gathered} 5.2(6.1) \\ 1,2,3,6,16 \\ \hline \end{gathered}$ | $\begin{gathered} 5.0(1.9) \\ 3,4,5,6,9 \end{gathered}$ | $\begin{gathered} 3.3(3.1) \\ 1,2,2,4,9 \end{gathered}$ | $\begin{gathered} 4.5(5.1) \\ 1,1,3,5,14 \end{gathered}$ | $\begin{gathered} 4.7(2.0) \\ 2,3,4,6,8 \\ \hline \end{gathered}$ | $\begin{gathered} 3.4(3.1) \\ 1,2,2,4,9 \end{gathered}$ | $\begin{gathered} 4.6(5.4) \\ 1,2,3,6,14 \\ \hline \end{gathered}$ |
| 1.0 | $\begin{gathered} 2.6(2.7) \\ 1,1,2,3,7 \end{gathered}$ | $\begin{gathered} 3.0(3.1) \\ 1,1,2,4,9 \end{gathered}$ | $\begin{gathered} 3.7(1.2) \\ 2,3,3,4,6 \end{gathered}$ | $\begin{gathered} 2.0(1.3) \\ 1,1,2,2,4 \end{gathered}$ | $\begin{gathered} 2.4(2.3) \\ 1,1,2,3,6 \end{gathered}$ | $\begin{gathered} 3.5(1.4) \\ 2,2,3,4,6 \end{gathered}$ | $\begin{gathered} 2.1(1.5) \\ 1,1,2,2,5 \end{gathered}$ | $\begin{gathered} 2.6(2.6) \\ 1,1,2,3,7 \end{gathered}$ |
| 1.5 | $\begin{gathered} 1.2(0.6) \\ 1,1,1,1,2 \\ \hline \end{gathered}$ | $\begin{gathered} 1.3(0.8) \\ 1,1,1,1,3 \\ \hline \end{gathered}$ | $\begin{gathered} 2.4(0.6) \\ 2,2,2,3,3 \\ \hline \end{gathered}$ | $\begin{gathered} 1.1(0.4) \\ 1,1,1,1,2 \\ \hline \end{gathered}$ | $\begin{gathered} \hline 1.2(0.5) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 2.4(0.7) \\ 2,2,2,3,4 \\ \hline \end{gathered}$ | $\begin{gathered} \hline 1.2(0.5) \\ 1,1,1,1,2 \\ \hline \end{gathered}$ | $\begin{gathered} 1.3(0.6) \\ 1,1,1,1,2 \\ \hline \end{gathered}$ |
| 2 | $\begin{gathered} 1.0(0.1) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.2) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 2.0(0.2) \\ 2,2,2,2,3 \end{gathered}$ | $\begin{gathered} 1.0(0.1) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.1) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.9(0.5) \\ 1,2,2,2,3 \end{gathered}$ | $\begin{gathered} 1.0(0.2) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.2) \\ 1,1,1,1,1 \end{gathered}$ |
| 3 | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 2.0(0.0) \\ 2,2,2,2,2 \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.3(0.4) \\ 1,1,1,2,2 \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ |
| $\delta=2.00$ |  |  |  |  |  |  |  |  |


| 0 | $\begin{gathered} \hline 16.1(119.0) \\ 1,4,10,21,51 \end{gathered}$ | $\begin{gathered} 15.0(17.9) \\ 1,4,9,19,48 \end{gathered}$ | $\begin{gathered} 13.4(7.7) \\ 5,8,12,17,28 \end{gathered}$ | $\begin{gathered} 12.8(14.9) \\ 1,4,8,16,40 \end{gathered}$ | $\begin{gathered} 15.3(17.8) \\ 1,4,10,20,49 \\ \hline \end{gathered}$ | $\begin{gathered} \hline 11.4(7.0) \\ 3,7,10,15,24 \\ \hline \end{gathered}$ | $\begin{gathered} 11.3(13.9) \\ 1,3,7,14,36 \end{gathered}$ | $\begin{gathered} 14.0(16.9) \\ 1,3,8,18,45 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.25 | $\begin{gathered} 10.3(11.7) \\ 1,3,6,13,32 \end{gathered}$ | $\begin{gathered} 10.4(12.1) \\ 1,3,7,13,33 \end{gathered}$ | $\begin{gathered} 9.2(4.6) \\ 4,6,8,11,18 \\ \hline \end{gathered}$ | $\begin{gathered} 7.9(8.7) \\ 1,3,5,10,24 \end{gathered}$ | $\begin{gathered} 9.9(11.2) \\ 1,3,6,13,31 \\ \hline \end{gathered}$ | $\begin{gathered} 8.3(4.6) \\ 2,5,8,11,17 \\ \hline \end{gathered}$ | $\begin{gathered} 7.5(8.6) \\ 1,2,5,9,23 \\ \hline \end{gathered}$ | $\begin{gathered} 9.6(11.4) \\ 1,2,6,12,31 \end{gathered}$ |
| 0.5 | $\begin{gathered} 6.1(6.8) \\ 1,2,4,8,19 \\ \hline \end{gathered}$ | $\begin{gathered} 6.2(6.8) \\ 1,2,4,8,19 \\ \hline \end{gathered}$ | $\begin{gathered} 6.1(2.5) \\ 3,4,6,7,11 \\ \hline \end{gathered}$ | $\begin{gathered} 4.4(4.2) \\ 1,2,3,6,12 \\ \hline \end{gathered}$ | $\begin{gathered} 5.8(6.4) \\ 1,2,4,7,17 \\ \hline \end{gathered}$ | $\begin{gathered} 5.6(2.7) \\ 2,4,5,7,10 \\ \hline \end{gathered}$ | $\begin{gathered} 4.3(4.2) \\ 1,2,3,5,12 \end{gathered}$ | $\begin{gathered} 5.5(6.4) \\ 1,2,3,7,17 \\ \hline \end{gathered}$ |
| 0.75 | $\begin{gathered} 3.5(3.6) \\ 1,1,2,4,10 \end{gathered}$ | $\begin{gathered} 3.7(3.8) \\ 1,1,2,5,11 \end{gathered}$ | $\begin{gathered} 4.4(1.6) \\ 2,3,4,5,7 \end{gathered}$ | $\begin{gathered} 2.6(2.0) \\ 1,1,2,3,6 \end{gathered}$ | $\begin{gathered} 3.2(3.2) \\ 1,1,2,4,9 \end{gathered}$ | $\begin{gathered} 4.1(1.7) \\ 2,3,4,5,7 \end{gathered}$ | $\begin{gathered} 2.7(2.1) \\ 1,1,2,3,6 \end{gathered}$ | $\begin{gathered} 3.2(3.3) \\ 1,1,2,4,9 \end{gathered}$ |
| 1.0 | $\begin{gathered} \hline 2.1(1.8) \\ 1,1,1,2,5 \\ \hline \end{gathered}$ | $\begin{gathered} \hline 2.3(2.1) \\ 1,1,2,3,6 \\ \hline \end{gathered}$ | $\begin{array}{r} 3.3(1.1) \\ 2,3,3,4,5 \\ \hline \end{array}$ | $\begin{gathered} 1.7(1.0) \\ 1,1,1,2,4 \\ \hline \end{gathered}$ | $\begin{gathered} 1.9(1.6) \\ 1,1,1,2,5 \\ \hline \end{gathered}$ | $\begin{gathered} 3.2(1.2) \\ 2,2,3,4,5 \\ \hline \end{gathered}$ | $\begin{gathered} 1.8(0.4) \\ 1,1,1,1,2 \\ \hline \end{gathered}$ | $\begin{gathered} \hline 2.1(1.7) \\ 1,1,2,2,5 \\ \hline \end{gathered}$ |
| 1.5 | $\begin{gathered} \hline 1.1(0.5) \\ 1,1,1,1,2) \\ \hline \end{gathered}$ | $\begin{gathered} 1.2(0.6) \\ 1,1,1,1,2 \\ \hline \end{gathered}$ | $\begin{gathered} 2.3(0.5) \\ 2,2,2,3,3 \\ \hline \end{gathered}$ | $\begin{gathered} 1.1(0.3) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.1(0.4) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 2.3(0.6) \\ 1,2,2,3,3 \\ \hline \end{gathered}$ | $\begin{gathered} 1.2(0.4) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.2(0.5) \\ 1,1,1,1,2 \end{gathered}$ |
| 2 | $\begin{gathered} 1.0(0.1) \\ 11,1,1,1 \\ \hline \end{gathered}$ | $\begin{gathered} 1.0(0.1) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 2.0(0.2) \\ 2,2,2,2,2 \end{gathered}$ | $\begin{gathered} 1.0(0.1) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.1) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.8(0.5) \\ 1,2,2,2,2 \end{gathered}$ | $\begin{gathered} 1.0(0.1) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.1) \\ 1,1,1,1,1 \end{gathered}$ |
| 3 | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \\ \hline \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \\ \hline \end{gathered}$ | $\begin{gathered} 2.0(0.0) \\ 2,2,2,2,2 \\ \hline \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \\ \hline \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,11 \\ \hline \end{gathered}$ | $\begin{gathered} 1.2(0.4) \\ 1,1,1,1,2 \\ \hline \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \\ \hline \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \\ \hline \end{gathered}$ |

** indicates unstable variance estimate and \# indicates the percentile value exceeds 5000 .
Table-8. Performance comparisons for $m=300, n=5$ between various competetive charts for the Exponential $(\theta, \delta)$ distribution with $\mathrm{ARL}_{0}=500$.

| $\theta$ | Shewhart Lepage Chart | Shewhart Cucconi Chart | CUSUM Lepage chart |  |  | CUSUM Cucconi chart |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $k=0$ | $k=3$ | $k=6$ | $k=0$ | $k=1.5$ | $k=3.0$ |
| $\delta=0.50$ |  |  |  |  |  |  |  |  |
| 0 | $\begin{gathered} 81.9(102.7) \\ 4,20,49,104,272 \end{gathered}$ | $\begin{gathered} 98.2(130.2) \\ 4,23,56,124,329 \end{gathered}$ | $\begin{gathered} 27.9(13.7) \\ 12,18,25,34,53 \end{gathered}$ | $83.4(113.5)$ $4,19,47,103,280$ | $\begin{gathered} 104.1(136.9) \\ 5,24,61,132,346 \end{gathered}$ | $\begin{gathered} 28.2(15.1) \\ 10,18,25,35,56 \end{gathered}$ | $\begin{gathered} 76.5(108.0) \\ 2,16,42,94,264 \end{gathered}$ | $\begin{gathered} 94.3(125.3) \\ 3,21,54,119,322 \end{gathered}$ |
| 0.25 | $\begin{gathered} >3600(* *) \\ 321,1972, \#, \#, \# \end{gathered}$ | $>4900 \text { (**) }$ <br> \#, \#, \#, \#, \# | $\begin{gathered} 40.3(44.4) \\ 16,24,33,46,84 \end{gathered}$ | $\begin{gathered} >2400\left({ }^{* *}\right) \\ 74,526,1850, \#, \# \end{gathered}$ | $\begin{gathered} >4400(* *) \\ 940, \#, \#, \#, \# \end{gathered}$ | $\begin{gathered} 42.3(20.5) \\ 22,30,38,49,77 \end{gathered}$ | $>4900$ (**) \#, \#, \#, \#, \# | $>4900(* *)$ <br> \#, \#, \#, \#, \# |
| 0.5 | $\begin{gathered} 989.3(1252.8) \\ 28,170,487,1244,4414 \end{gathered}$ | $>4800 \quad(* *)$ <br> \#, \#, \#, \#, \# | $\begin{gathered} 13.1(3.4) \\ 8,11,13,15,19 \end{gathered}$ | $\begin{gathered} 66.3(137.3) \\ 5,13,30,68,234 \end{gathered}$ | $>1300 \quad$ (**) $^{\text {** }}$ $35,220,654,1854, \#$ | $\begin{gathered} 19.5(3.7) \\ 14,17,19,22,26 \end{gathered}$ | $>4800 \quad \text { (**) }$ <br> \#, \#, \#, \#, \# | $>4800 \quad(* *)$ <br> \#, \#, \#, \#, \# |
| 0.75 | $\begin{gathered} >2600\left(^{* *}\right) \\ 97,688,2281, \#, \# \end{gathered}$ | $\begin{gathered} >4000(* *) \\ 488,3456, \#, \#, \# \end{gathered}$ | $\begin{gathered} 17.6(3.4) \\ 12,15,18,20,23 \\ \hline \end{gathered}$ | $\begin{gathered} >2100(* *) \\ 26,282,1413, \#, \# \end{gathered}$ | $>3200 \quad($ **) $167,1245,4275, \#, \#$ | $\begin{gathered} 17.6(2.0) \\ 14,16,18,19,21 \end{gathered}$ | >4000 (**) 389, 3243, \#, \#, \# | $\begin{gathered} >4000 \quad(* *) \\ 487,3537, \#, \#, \# \end{gathered}$ |
| 1.0 | $\begin{gathered} 917.0(1304.8) \\ 17,111,358,1067,4914 \end{gathered}$ | $\begin{gathered} >1800(* *) \\ 42,296,991,3117, \# \end{gathered}$ | $\begin{gathered} 15.0(4.1) \\ 9,12,15,18,22 \end{gathered}$ | $\begin{gathered} >700\left({ }^{(* *)}\right. \\ 6,31,150,747, \# \end{gathered}$ | $\begin{gathered} >1300(* *) \\ 23,167,582,1885, \# \end{gathered}$ | $\begin{gathered} 13.5(2.6) \\ 9,12,14,15,17 \end{gathered}$ | $\begin{gathered} >1100\left({ }^{* *}\right) \\ 8,50,268,1429, \# \end{gathered}$ | $\begin{gathered} >1800(* *) \\ 36,282,986,3161, \# \end{gathered}$ |
| 1.5 | $\begin{gathered} 11.6(28.5) \\ 1,2,4,11,44 \end{gathered}$ | $\begin{gathered} 36.1(114.4) \\ 1,4,11,31,138 \end{gathered}$ | $\begin{gathered} 4.8(1.1) \\ 3,4,5,5,7 \end{gathered}$ | $\begin{gathered} 2.5(1.5) \\ 1,2,2,3,5 \end{gathered}$ | $\begin{gathered} 8.3(38.1) \\ 1,2,3,6,25 \\ \hline \end{gathered}$ | $\begin{gathered} 5.3(1.4) \\ 3,4,5,6,8 \end{gathered}$ | $\begin{gathered} 3.3(3.6) \\ 1,2,3,4,7 \end{gathered}$ | $\begin{gathered} 17.7(76.1) \\ 1,2,4,11,63 \end{gathered}$ |
| 2 | $\begin{gathered} 1.1(0.5) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.4(1.7) \\ 1,1,1,1,3 \end{gathered}$ | $\begin{gathered} 2.9(0.5) \\ 2,3,3,3,4 \end{gathered}$ | $\begin{gathered} 1.1(0.3) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.1(0.3) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 2.9(0.6) \\ 2,2,3,3,4 \end{gathered}$ | $\begin{gathered} 1.2(0.4) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.2(0.5) \\ 1,1,1,1,2 \end{gathered}$ |
| 3 | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 2.0(0.0) \\ 2,2,2,22 \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 2.0(0.1) \\ 2,2,2,2,2 \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ |
| $\delta=1.00$ |  |  |  |  |  |  |  |  |
| 0 | $\begin{gathered} 501.5(556.7) \\ 23,130,322,673,1577 \end{gathered}$ | $\begin{gathered} \hline 501.5(585.4) \\ 22,125,309,662,1621 \end{gathered}$ | $\begin{gathered} 484.3(691.8) \\ 54,131,261,532,1487 \end{gathered}$ | $\begin{gathered} \hline 503.1(613.9) \\ 32,109,342,841,1848 \end{gathered}$ | $\begin{gathered} 500.9(593.1) \\ 21,101,409,938,2233 \end{gathered}$ | $\begin{gathered} 504.7(717.3) \\ 48,124,258,564,1825 \end{gathered}$ | $\begin{gathered} 501.7(601.2) \\ 18,117,302,655,1664 \end{gathered}$ | $\begin{gathered} 504.6(589.3) \\ 21,124,310,662,1649 \end{gathered}$ |
| 0.25 | $\begin{gathered} 396.4(507.1) \\ 16,91,230,505,1323 \end{gathered}$ | $\begin{gathered} 527.3(679.1) \\ 20,115,297,665,1823 \end{gathered}$ | $\begin{gathered} 66.2(70.4) \\ 22,36,51,75,150 \end{gathered}$ | $494.3(631.8)$ $20,110,278,624,1699$ | $\begin{gathered} 540.3(680.5) \\ 21,123,309,689 \end{gathered}$ | $\begin{gathered} 75.4(85.2) \\ 24,41,59,86,170 \end{gathered}$ | $\begin{gathered} 529.8(704.9) \\ 16,108,288,660,1888 \end{gathered}$ | $\begin{gathered} 528.4(693.5) \\ 18,112,292,659,1872 \end{gathered}$ |
| 0.5 | $\begin{gathered} 117.4(152.4) \\ 5,27,68,150,392 \end{gathered}$ | $\begin{gathered} 162.3(221.7) \\ 7,36,91,202,548 \\ \hline \end{gathered}$ | $\begin{gathered} 17.2(4.9) \\ 10,14,17,20,26 \end{gathered}$ | $\begin{gathered} 97.3(127.7) \\ 5,22,55,123,328 \end{gathered}$ | $\begin{gathered} 155.8(210.9) \\ 6,34,88,194,526 \end{gathered}$ | $\begin{gathered} 19.4(6.2) \\ 10,15,19,23,30 \end{gathered}$ | $\begin{gathered} 125.6(192.1) \\ 4,24,64,150,449 \\ \hline \end{gathered}$ | $\begin{gathered} 159.3(226.1) \\ 5,33,86,197,553 \end{gathered}$ |
| 0.75 | $\begin{gathered} 34.9(46.1) \\ 2,8,20,44,117 \end{gathered}$ | $\begin{gathered} 49.2(67.1) \\ 2,11,28,61,165 \end{gathered}$ | $\begin{gathered} 10.8(3.1) \\ 6,9,11,13,16 \end{gathered}$ | $\begin{gathered} 20.3(28.2) \\ 2,6,11,24,67 \end{gathered}$ | $\begin{gathered} 42.1(57.2) \\ 2,9,24,52,143 \end{gathered}$ | $\begin{gathered} 10.8(3.4) \\ 6,8,11,13,17 \end{gathered}$ | $\begin{gathered} 21.8(33.6) \\ 2,5,12,25,73 \end{gathered}$ | $\begin{gathered} 44.4(65.6) \\ 2,9,24,54,152 \end{gathered}$ |


| 1.0 | $\begin{gathered} 10.6(13.5) \\ 1,3,6,13,34 \end{gathered}$ | $\begin{gathered} 15.6(20.4) \\ 1,4,9,19,51 \end{gathered}$ | $\begin{gathered} 6.7(2.0) \\ 4,5,6,8,10 \\ \hline \end{gathered}$ | $\begin{gathered} 4.8(4.4) \\ 1,2,4,6,12 \end{gathered}$ | $\begin{gathered} 10.6(14.7) \\ 1,3,6,13,35 \end{gathered}$ | $\begin{gathered} 6.8(2.2) \\ 3,5,7,8,11 \\ \hline \end{gathered}$ | $\begin{gathered} 5.3(5.0) \\ 1,2,4,7,14 \end{gathered}$ | $\begin{gathered} 11.9(16.9) \\ 1,3,6,14,40 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.5 | $\begin{gathered} 1.6(1.3) \\ 1,1,1,2,4 \end{gathered}$ | $\begin{gathered} 2.3(2.2) \\ 1,1,1,3,6 \end{gathered}$ | $\begin{gathered} 3.4(0.7) \\ 2,3,3,4,5 \end{gathered}$ | $\begin{gathered} 1.5(0.6) \\ 1,1,1,2,2 \end{gathered}$ | $\begin{gathered} 1.6(0.9) \\ 1,1,1,2,3 \end{gathered}$ | $\begin{gathered} 3.4(0.9) \\ 2,3,3,4,5 \end{gathered}$ | $\begin{gathered} 1.7(0.7) \\ 1,1,2,2,3 \end{gathered}$ | $\begin{gathered} 1.8(1.2) \\ 1,1,1,2,4 \end{gathered}$ |
| 2 | $\begin{gathered} 1.0(0.1) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.2) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 2.4(0.5) \\ 2,2,2,3,3 \end{gathered}$ | $\begin{gathered} 1.0(0.1) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.1) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 2.3(0.5) \\ 2,2,2,3,3 \end{gathered}$ | $\begin{gathered} 1.0(0.2) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.2) \\ 1,1,1,1,1 \end{gathered}$ |
| 3 | $\begin{gathered} 1.0(0.00 \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 2.0(0.0) \\ 2,2,2,2,2 \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.9(0.2) \\ 1,2,2,2,2 \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ |

## $\delta=1.25$

| 0 | $169.4(195.2)$ <br> $8,44,107,223,542$ |
| :---: | :---: |
| 0.25 | $84.8(100.6)$ <br> $4,22,53,111,272$ |
| 0.5 | $32.8(38.1)$ |
|  | $2,9,21,43,105$ |
| 0.75 | $12.5(14.3)$ |
|  | $1,3,8,16,39$ |
| 1.0 | $4.9(5.2)$ |
|  | $1,2,3,6,15$ |
| 1.5 | $1.3(0.8)$ |
|  | $1,1,1,1,3$ |
| 2 | $1.0(0.1)$ |
|  | $1,1,1,1,1$ |
| 3 | $1.0(0.0)$ |
|  | $1,1,1,1,1$ |
|  |  |


| 0 | $\begin{gathered} 58.5(64.4) \\ 3,16,38,79,183 \\ \hline \end{gathered}$ | $\begin{gathered} 55.6(61.6) \\ 3,15,36,74,175 \\ \hline \end{gathered}$ | $\begin{gathered} 37.9(22.9) \\ 13,22,33,47,80 \end{gathered}$ | $\begin{gathered} 61.9(71.3) \\ 4,16,39,81,196 \\ \hline \end{gathered}$ | $\begin{gathered} 71.9(81.3) \\ 4,19,46,95,228 \end{gathered}$ | $\begin{gathered} 32.9(20.7) \\ 10,19,28,41,71 \\ \hline \end{gathered}$ | $\begin{gathered} \hline 44.5(52.3) \\ 2,11,28,59,143 \end{gathered}$ | $\begin{gathered} \hline 53.1(61.1) \\ 2,13,33,71,170 \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.25 | $\begin{gathered} 31.6(34.7) \\ 2,9,21,42,98 \end{gathered}$ | $\begin{gathered} 33.5(37.4) \\ 2,9,22,45,105 \end{gathered}$ | $\begin{gathered} 19.3(8.8) \\ 8,13,18,24,36 \end{gathered}$ | $\begin{gathered} 29.2(32.8) \\ 2,8,19,38,91 \end{gathered}$ | $\begin{gathered} 37.4(42.5) \\ 2,10,24,50,117 \end{gathered}$ | $\begin{gathered} 18.6(9.2) \\ 6,12,17,23,35 \end{gathered}$ | $\begin{gathered} 24.8(28.8) \\ 2,6,16,32,80 \\ \hline \end{gathered}$ | $\begin{gathered} 31.3(36.2) \\ 2,8,20,42,100 \\ \hline \end{gathered}$ |
| 0.5 | $\begin{gathered} 14.7(15.7) \\ 1,4,10,19,45) \\ \hline \end{gathered}$ | $\begin{gathered} 16.0(17.7) \\ 1,5,10,21,50 \\ \hline \end{gathered}$ | $\begin{gathered} 10.1(3.5) \\ 5,8,10,12,16 \\ \hline \end{gathered}$ | $\begin{gathered} 10.7(10.9) \\ 1,4,7,14,31 \end{gathered}$ | $\begin{gathered} 16.5(18.2) \\ 1,5,11,22,51 \end{gathered}$ | $\begin{gathered} 9.8(3.9) \\ 4,7,9,12,17 \end{gathered}$ | $\begin{gathered} 9.5(10.0) \\ 1,3,6,12,28 \end{gathered}$ | $\begin{gathered} 14.0(15.9) \\ 1,4,9,19,44 \end{gathered}$ |
| 0.75 | $\begin{gathered} 6.6(6.8) \\ 1,2,4,9,20 \end{gathered}$ | $\begin{gathered} 7.7(8.2) \\ 1,2,5,10,23 \end{gathered}$ | $\begin{gathered} 6.5(2.1) \\ 4,5,6,8,10 \end{gathered}$ | $\begin{gathered} 4.3(3.4) \\ 1,2,3,6,11 \end{gathered}$ | $\begin{gathered} 6.8(7.2) \\ 1,2,5,9,20 \end{gathered}$ | $\begin{gathered} 6.3(2.3) \\ 3,5,6,8,10 \end{gathered}$ | $\begin{gathered} 4.2(3.4) \\ 1,2,3,6,11 \end{gathered}$ | $\begin{gathered} 6.3(6.7) \\ 1,2,4,8,19 \end{gathered}$ |
| 1.0 | $\begin{gathered} 3.1(2.9) \\ 1,1,2,4,9 \end{gathered}$ | $\begin{gathered} 3.8(3.7) \\ 1,1,3,5,11 \end{gathered}$ | $\begin{gathered} 4.5(1.2) \\ 3,4,4,5,7 \end{gathered}$ | $\begin{gathered} 2.3(1.3) \\ 1,1,2,3,5 \end{gathered}$ | $\begin{gathered} 3.0(2.6) \\ 1,1,2,4,8 \end{gathered}$ | $\begin{gathered} 4.5(1.5) \\ 2,3,4,5,7 \end{gathered}$ | $\begin{gathered} 2.5(1.5) \\ 1,1,2,3,5 \end{gathered}$ | $\begin{gathered} 3.0(2.7) \\ 1,1,2,4,8 \end{gathered}$ |
| 1.5 | $\begin{gathered} 1.2(0.6) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.4(0.8) \\ 1,1,1,1,3 \end{gathered}$ | $\begin{gathered} 2.8(0.6) \\ 2,2,3,3,4 \end{gathered}$ | $\begin{gathered} 1.2(0.4) \\ 1,1,1,, 2 \end{gathered}$ | $\begin{gathered} 1.2(0.5) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 2.8(0.7) \\ 2,2,3,3,4 \end{gathered}$ | $\begin{gathered} 1.3(0.5) \\ 1,1,1,2,2 \end{gathered}$ | $\begin{gathered} 1.3(0.6) \\ 1,1,1,1,2 \end{gathered}$ |
| 2 | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.1) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 2.1(0.3) \\ 2,2,2,2,3 \end{gathered}$ | $\begin{gathered} 1.0(0.1) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.1) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 2.1(0.4) \\ 2,2,2,2,3 \end{gathered}$ | $\begin{gathered} 1.0(0.1) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.1) \\ 1,1,1,1,1 \end{gathered}$ |
| 3 | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 2.0(0.0) \\ 2,2,2,2,2 \\ \hline \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \\ \hline \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \\ \hline \end{gathered}$ | $\begin{gathered} 1.8(0.3) \\ 1,2,2,2,2 \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \\ \hline \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \\ \hline \end{gathered}$ |
| $\delta=1.75$ |  |  |  |  |  |  |  |  |
| 0 | $\begin{gathered} \hline 27.0(28.6) \\ 2,8,18,36,83 \\ \hline \end{gathered}$ | $\begin{gathered} \hline 25.4(27.4) \\ 2,7,17,34,79 \end{gathered}$ | $\begin{gathered} 21.3(10.8) \\ 8,14,19,27,42 \end{gathered}$ | $\begin{gathered} 25.5(27.4) \\ 2,7,17,34,78 \\ \hline \end{gathered}$ | $\begin{gathered} 31.4(33.7) \\ 2,9,21,42,97 \\ \hline \end{gathered}$ | $\begin{gathered} 18.4(9.9) \\ 6,12,17,23,37 \\ \hline \end{gathered}$ | $\begin{gathered} 18.6(20.3) \\ 2,5,12,25,58 \\ \hline \end{gathered}$ | $\begin{gathered} 23.3(25.8) \\ 2,6,15,31,73 \\ \hline \end{gathered}$ |
| 0.25 | $\begin{gathered} 15.9(16.6) \\ 1,5,11,21,48 \end{gathered}$ | $\begin{gathered} 16.2(17.0) \\ 1,5,11,22,49 \end{gathered}$ | $\begin{gathered} 13.3(5.7) \\ 6,9,12,16,24 \\ \hline \end{gathered}$ | $\begin{gathered} 13.5(13.8) \\ 2,4,9,18,40 \end{gathered}$ | $\begin{gathered} 17.9(19.2) \\ 1,5,12,24,55 \\ \hline \end{gathered}$ | $\begin{gathered} 12.4(5.9) \\ 4,8,12,16,23 \end{gathered}$ | $\begin{gathered} 11.3(12.0) \\ 1,3,7,15,34 \end{gathered}$ | $\begin{gathered} 14.6(16.0) \\ 1,4,9,19,46 \end{gathered}$ |
| 0.5 | $\begin{gathered} 8.4(8.6) \\ 1,3,6,11,25 \end{gathered}$ | $\begin{gathered} 8.9(9.2) \\ 1,3,6,12,27 \\ \hline \end{gathered}$ | $\begin{gathered} 8.0(2.8) \\ 4,6,8,10,13 \\ \hline \end{gathered}$ | $\begin{gathered} 6.2(5.5) \\ 1,3,5,8,17 \\ \hline \end{gathered}$ | $\begin{gathered} 9.0(9.2) \\ 1,3,6,12,27 \end{gathered}$ | $\begin{gathered} 7.6(3.2) \\ 3,5,7,10,13 \end{gathered}$ | $\begin{gathered} 5.5(5.0) \\ 1,2,4,7,15 \\ \hline \end{gathered}$ | $\begin{gathered} 7.6(7.9) \\ 1,2,5,10,23 \\ \hline \end{gathered}$ |
| 0.75 | $\begin{gathered} 4.3(4.1) \\ 1,2,3,6,12 \end{gathered}$ | $\begin{gathered} 4.8(4.7) \\ 1,2,3,6,14 \end{gathered}$ | $\begin{gathered} 5.5(1.7) \\ 3,4,5,6,9 \end{gathered}$ | $\begin{gathered} 3.2(2.2) \\ 1,2,3,4,7 \end{gathered}$ | $\begin{gathered} 4.3(4.0) \\ 1,2,3,6,12 \end{gathered}$ | $\begin{gathered} 5.2(2.0) \\ 2,4,5,6,9 \end{gathered}$ | $\begin{gathered} 3.1(2.2) \\ 1,2,2,4,7 \\ \hline \end{gathered}$ | $\begin{gathered} 3.9(3.8) \\ 1,2,3,5,11 \end{gathered}$ |


| 1.0 | $\begin{gathered} 2.3(1.9) \\ 1,1,2,3,6 \end{gathered}$ | $\begin{gathered} 2.7(2.4) \\ 1,1,2,3,7 \end{gathered}$ | $\begin{gathered} 4.0(1.1) \\ 3,3,4,5,6 \end{gathered}$ | $\begin{gathered} 2.0(1.0) \\ 1,1,2,2,4 \end{gathered}$ | $\begin{gathered} 2.3(1.7) \\ 1,1,2,3,6 \end{gathered}$ | $\begin{gathered} 3.9(1.3) \\ 2,3,4,5,6 \end{gathered}$ | $\begin{gathered} 2.0(1.1) \\ 1,1,2,2,4 \end{gathered}$ | $\begin{gathered} 2.3(1.7) \\ 1,1,2,3,6 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.5 | $\begin{gathered} 1.1(0.4) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.2(0.6) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 2.7(0.6) \\ 2,2,3,3,3 \end{gathered}$ | $\begin{gathered} 1.2(0.4) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.1(0.4) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 2.6(0.7) \\ 2,2,2,3,4 \end{gathered}$ | $\begin{gathered} 1.2(0.4) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.2(0.4) \\ 1,1,1,1,2 \end{gathered}$ |
| 2 | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.1) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 2.1(0.3) \\ 2,2,2,2,3 \end{gathered}$ | $\begin{gathered} 1.0(0.1) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 2.1(0.3) \\ 2,2,2,2,3 \end{gathered}$ | $\begin{gathered} 1.0(0.1) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.1) \\ 1,1,1,1,1 \end{gathered}$ |
| 3 | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 2.0(0.0) \\ 2,2,2,2,2 \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.8(0.4) \\ 1,2,2,2,2 \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ |
| $\delta=2.00$ |  |  |  |  |  |  |  |  |
| 0 | $\begin{gathered} 15.1(15.5) \\ 1,4,10,20,45 \end{gathered}$ | $\begin{gathered} 14.1(14.4) \\ 1,4,9,19,43 \end{gathered}$ | $\begin{gathered} 14.5(6.7) \\ 6,10,13,18,27 \end{gathered}$ | $\begin{gathered} 13.4(13.5) \\ 1,4,9,18,40 \end{gathered}$ | $\begin{gathered} 17.0(17.6) \\ 1,5,11,23,51 \end{gathered}$ | $\begin{gathered} 12.5(6.4) \\ 4,8,12,16,24 \end{gathered}$ | $\begin{gathered} 10.2(10.3) \\ 1,3,7,14,30 \end{gathered}$ | $\begin{gathered} 12.8(13.5) \\ 1,4,9,17,39 \end{gathered}$ |
| 0.25 | $\begin{gathered} 9.7(9.80 \\ 1,3,7,13,29 \end{gathered}$ | $\begin{gathered} 9.7(9.8) \\ 1,3,7,13,29 \end{gathered}$ | $\begin{gathered} 10.1(4.1) \\ 4,7,9,12,18 \end{gathered}$ | $\begin{gathered} 8.1(7.6) \\ 1,3,6,11,23 \end{gathered}$ | $\begin{gathered} 10.6(10.7) \\ 1,3,7,14,31 \end{gathered}$ | $\begin{gathered} 9.3(4.3) \\ 3,6,9,12,17 \end{gathered}$ | $\begin{gathered} 6.7(6.4) \\ 1,2,5,9,19 \end{gathered}$ | $\begin{gathered} 8.6(8.8) \\ 1,2,6,11,26 \end{gathered}$ |
| 0.5 | $\begin{gathered} 5.7(5.50 \\ 1,2,4,8,16 \end{gathered}$ | $\begin{gathered} 5.7(5.6) \\ 1,2,4,8,17 \end{gathered}$ | $\begin{gathered} 6.7(2.3) \\ 3,5,6,8,11 \end{gathered}$ | $\begin{gathered} 4.4(3.5) \\ 1,2,3,6,11 \end{gathered}$ | $\begin{gathered} 5.9(5.7) \\ 1,2,4,8,17 \end{gathered}$ | $\begin{gathered} 6.2(2.6) \\ 2,4,6,8,11 \end{gathered}$ | $\begin{gathered} 3.9(3.1) \\ 1,2,3,5,10 \end{gathered}$ | $\begin{gathered} 4.9(4.8) \\ 1,2,3,6,14 \end{gathered}$ |
| 0.75 | $\begin{gathered} 3.2(2.9) \\ 1,1,2,4,9 \end{gathered}$ | $\begin{gathered} 3.4(3.1) \\ 1,1,2,4,9 \end{gathered}$ | $\begin{gathered} 4.8(1.5) \\ 3,4,5,6,7 \end{gathered}$ | $\begin{gathered} 2.6(1.6) \\ 1,1,2,3,6 \end{gathered}$ | $\begin{gathered} 3.2(2.7) \\ 1,1,2,4,9 \end{gathered}$ | $\begin{gathered} 4.5(1.7) \\ 2,3,4,6,8 \end{gathered}$ | $\begin{gathered} 2.5(1.6) \\ 1,1,2,3,6 \end{gathered}$ | $\begin{gathered} 2.9(2.4) \\ 1,1,2,4,8 \end{gathered}$ |
| 1.0 | $\begin{gathered} 1.9(1.4) \\ 1,1,1,2,5 \end{gathered}$ | $\begin{gathered} 2.1(1.7) \\ 1,1,2,3,5 \end{gathered}$ | $\begin{gathered} 3.6(1.0) \\ 2,3,4,4,5 \end{gathered}$ | $\begin{gathered} 1.8(0.9) \\ 1,1,2,2,3 \end{gathered}$ | $\begin{gathered} 1.9(1.3) \\ 1,1,2,2,4 \end{gathered}$ | $\begin{gathered} 3.5(1.2) \\ 2,3,3,4,6 \end{gathered}$ | $\begin{gathered} 1.8(0.9) \\ 1,1,2,2,4 \end{gathered}$ | $\begin{gathered} 1.9(1.2) \\ 1,1,2,2,4 \end{gathered}$ |
| 1.5 | $\begin{gathered} 1.1(0.3) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.1(0.4) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 2.5(0.5) \\ 2,2,3,3,3 \end{gathered}$ | $\begin{gathered} 1.1(0.3) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.1(0.3) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 2.5(0.6) \\ 2,2,2,3,4 \end{gathered}$ | $\begin{gathered} 1.1(0.4) \\ 1,1,1,1,2 \end{gathered}$ | $\begin{gathered} 1.1(0.4) \\ 1,1,1,1,2 \end{gathered}$ |
| 2 | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 2.0(0.2) \\ 2,2,2,2,3 \end{gathered}$ | $\begin{gathered} 1.0(0.04) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 2.0(0.3) \\ 2,2,2,2,3 \end{gathered}$ | $\begin{gathered} 1.0(0.1) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.1) \\ 1,1,1,1,1 \end{gathered}$ |
| 3 | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 2.0(0.2) \\ 2,2,2,2,2 \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ | $\begin{gathered} 1.7(0.4) \\ 1,1,2,2,2 \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,11 \end{gathered}$ | $\begin{gathered} 1.0(0.0) \\ 1,1,1,1,1 \end{gathered}$ |

** indicates variance estimate is not meaningful and \# indicates the percentile value exceeds 50

# Indian Institute of Management Kozhikode 

| Type of Document: (Working Paper/Case/ Teaching Note, etc.) <br> Working Paper | Ref. No.: (to be filled by RCP office) <br> IIMK/WPS/163/QM\&OM/2014/21 |
| :---: | :---: |
| Title: <br> A PHASE-II NONPARAMETRIC CUSUM CHART WITH AN APPLICATION TO EXCHANGE RATES DATA |  |
| Author(s): | Institution(s) |
| A. Mukherjee | Indian Institute of Management Udaipur |
| M. Marozzi | Dipartimento di Economia e Statistica, Università della Calabria, Rende (CS), Italy |
| Shovan Chowdhury | Indian Institute of Management Kozhikode |
| Subject Areas: Applied Statistics | Subject Classification Codes, if any: |
| Supporting Agencies, if any: | Research Grant/Project No.(s): |
| Supplementary Information, if any: | Date of Issue: (to be filled by RCP office) November 26, 2014 |
| Full text or only abstract to be uploaded on website: (please choose one) Full text | Number of Pages: 44 |
| Abstract: <br> Recently, Chowdhury et al. (2014a) proposed a single distribution-free Shewhart-type control chart based on the Cucconi (1968) test statistic for monitoring shift in the unknown location and scale parameters of a process distribution simultaneously. Several recent researches demonstrated that the CUSUM type charts perform better than the Shewhart-type charts under small and persistent shift. In the present work, we develop a phase II distribution-free CUSUM chart based on the Cucconi statistic, referred to as CUSUM-Cucconi (CC) chart. Nonparametric nature of the Cucconi statistic ensures that all the in control (IC) properties of the proposed chart remain invariant and known for all continuous process distributions. Control limits are tabulated for implementation of the chart. The IC and out of control (OOC) performance of the chart are thoroughly investigated in terms of the average, standard deviation, median and some percentiles of the corresponding run length distributions. A detailed comparison with the Shewhart-type Cucconi and Lepage charts as well as the CUSUM Lepage chart (as in Chowdhury et al. (2014b)) is presented. The proposed chart is illustrated with exchange rates data. |  |
| Key Words/Phrases: Cucconi Statistic; Average Run Length; Upper Control Limit; CUSUM Cucconi Chart; Nonparametric; Monte-Carlo Simulation; Statistical Process Control. |  |
| Referencing Style Followed: APA style |  |

Research, Conference And Publication Office Indian Institute Of Management Kozhikode

IIMK Campus P.O., Kozhikode 673570
Kerala, India
Telephone +914952809238
E-mail rcp@iimk.ac.in
website www.iimk.ac.in

